A320441 Numbers whose binary expansion is quasiperiodic.
3, 7, 10, 15, 21, 31, 36, 42, 45, 54, 63, 73, 85, 91, 109, 127, 136, 146, 153, 170, 173, 181, 182, 187, 204, 219, 221, 238, 255, 273, 292, 307, 341, 365, 375, 409, 438, 443, 477, 511, 528, 546, 561, 585, 594, 614, 627, 660, 682, 685, 693, 725, 726, 731, 750
Offset: 1
Examples
The first terms, alongside their binary representations and prefixes, are: n a(n) bin(a(n)) prefix -- ---- --------- ------ 1 3 11 1 2 7 111 1 3 10 1010 10 4 15 1111 1 5 21 10101 101 6 31 11111 1 7 36 100100 100 8 42 101010 10 9 45 101101 101 10 54 110110 110 11 63 111111 1 12 73 1001001 1001
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Scatterplot of the first difference of the first 100000 terms
Programs
-
PARI
isok(w) = { my (tt=0); for (l=1, oo, my (t=w%(2^l)); if (t!=tt, if (t==w, return (0)); my (r=w, g=l); while (g-->=0 && r>=t, r \= 2; if (r%(2^l)==t, if (r==t, return (1), g=l))); tt = t)) }
-
Python
def qp(w): for i in range(1, len(w)): prefix, covered = w[:i], set() for j in range(len(w)-i+1): if w[j:j+i] == prefix: covered |= set(range(j, j+i)) if covered == set(range(len(w))): return True return False def ok(n): return qp(bin(n)[2:]) print([k for k in range(751) if ok(k)]) # Michael S. Branicky, Mar 20 2022
Comments