This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320444 #20 Aug 21 2019 19:04:38 %S A320444 1,1,1,4,17,141,1297,17683,262145,4861405,100112001,2371816701, %T A320444 61917364225,1796326510993,56693912375297,1947734359001551, %U A320444 72059082110369793,2863257607266475419,121439531096594251777,5480987217944109919765,262144000000000000000001 %N A320444 Number of uniform hypertrees spanning n vertices. %C A320444 The density of a hypergraph is the sum of sizes of its edges minus the number of edges minus the number of vertices. A hypertree is a connected hypergraph of density -1. A hypergraph is uniform if its edges all have the same size. The span of a hypergraph is the union of its edges. %H A320444 Robert Israel, <a href="/A320444/b320444.txt">Table of n, a(n) for n = 0..387</a> %F A320444 a(n + 1) = Sum_{d|n} n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1). %F A320444 a(p prime) = 1 + (p + 1)^(p - 1). %e A320444 Non-isomorphic representatives of the 5 unlabeled uniform hypertrees on 5 vertices and their multiplicities in the labeled case, which add up to a(5) = 141: %e A320444 5 X {{1,5},{2,5},{3,5},{4,5}} %e A320444 60 X {{1,4},{2,5},{3,5},{4,5}} %e A320444 60 X {{1,3},{2,4},{3,5},{4,5}} %e A320444 15 X {{1,2,5},{3,4,5}} %e A320444 1 X {{1,2,3,4,5}} %p A320444 f:= proc(n) local d; add((n-1)!/(d! * ((n-1)/d)!) * (n/d)^((n-1)/d - 1), d = numtheory:-divisors(n-1)); end proc: %p A320444 f(0):= 1: f(1):= 1: %p A320444 map(f, [$0..25]); # _Robert Israel_, Jan 10 2019 %t A320444 Table[Sum[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{d,Divisors[n]}],{n,10}] %o A320444 (PARI) a(n) = if (n<2, 1, n--; sumdiv(n, d, n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1))); \\ _Michel Marcus_, Jan 10 2019 %Y A320444 Row sums of A326374. %Y A320444 Cf. A000272, A030019, A035053, A038041, A052888, A057625, A061095, A121860, A134954, A236696, A262843. %K A320444 nonn %O A320444 0,4 %A A320444 _Gus Wiseman_, Jan 09 2019