cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A321152 n such that all n - p are practical numbers where p is a practical number in range n/2 <= p < n.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 24, 36, 48, 60, 72, 84, 96, 120
Offset: 1

Views

Author

Frank M Jackson, Dec 18 2018

Keywords

Comments

The following is a quotation from Hage-Hassan in his paper (see Link below). "The (concept of) right and left symmetry is fundamental in physics. This incites us to ask whether this symmetry is in (the) primes. Find the numbers n with a + a' = n. a, a' are primes and {a} are all the primes with: n/2 <= a < n and n = 2,3, ..."
This sequence is analogous to A320447. Instead of the sequence of primes it uses the sequence of practical numbers (A005153). It is conjectured that the sequence is finite and full.

Examples

			a(13)=24, because the practical numbers p in the range 12 <= p < 24 are {12, 16, 18, 20}. Also the complementary set {12, 8, 6, 4} has all its members practical numbers. This is the 13th occurrence of such a number.
		

Crossrefs

Programs

  • Mathematica
    PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
    plst[n_] := Select[Range[Ceiling[n/2], n-1], PracticalQ]; lst={}; Do[If[plst[n]!={}&&AllTrue[n-plst[n], PracticalQ], AppendTo[lst, n]], {n, 1, 10000}]; lst

A321334 n such that all n - s are squarefree numbers where s is a squarefree number in range n/2 <= s < n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 12, 13, 16, 36
Offset: 1

Views

Author

Frank M Jackson, Dec 18 2018

Keywords

Comments

The following is a quotation from Hage-Hassan in his paper (see Link below). "The (concept of) right and left symmetry is fundamental in physics. This incites us to ask whether this symmetry is in (the) primes. Find the numbers n with a + a' = n. a, a' are primes and {a} are all the primes with: n/2 <= a < n and n = 2,3, ..."
This sequence is analogous to A320447. Instead of the sequence of primes it uses the sequence of squarefree numbers (A005117). It is conjectured that the sequence is finite and full.

Examples

			a(10)=16, because the squarefree numbers s in the range 8 <= s < 16 are {10, 11, 13, 14, 15}. Also the complementary set {6, 5, 3, 2, 1} has all its members practical numbers. This is the 10th occurrence of such a number.
		

Crossrefs

Programs

  • Mathematica
    plst[n_] := Select[Range[Ceiling[n/2], n-1], SquareFreeQ]; lst={}; Do[If[plst[n]!={}&&AllTrue[n-plst[n], SquareFreeQ], AppendTo[lst, n]], {n, 1, 10000}]; lst

A321612 Numbers k such that all k - t are triangular numbers where t is a triangular number in range k/2 <= t < k.

Original entry on oeis.org

2, 4, 6, 7, 9, 13, 16, 21, 31
Offset: 1

Views

Author

Frank M Jackson, Dec 18 2018

Keywords

Comments

The following is a quotation from Hage-Hassan in his paper (see Link below). "The (concept of) right and left symmetry is fundamental in physics. This incites us to ask whether this symmetry is in (the) primes. Find the numbers n with a + a' = n. a, a' are primes and {a} are all the primes with: n/2 <= a < n and n = 2,3, ..."
This sequence is analogous to A320447. Instead of the sequence of primes it uses the sequence of triangular numbers (A000217). It is conjectured that the sequence is finite and full.

Examples

			a(9) = 31, because the triangular numbers in the range 16 <= p < 31 are {21}. Also the complementary set {10} has all its members triangular numbers. This is the 9th occurrence of such a number.
		

Crossrefs

Programs

  • Mathematica
    TriangularQ[n_] := Module[{m=0}, While[n>m(m+1)/2, m++]; If[n==m(m+1)/2, True, False]]; plst[n_] := Select[Range[Ceiling[n/2], n-1], TriangularQ]; lst={}; Do[If[plst[n]!={}&&AllTrue[n-plst[n], TriangularQ], AppendTo[lst, n]], {n, 1, 200}]; lst

A322605 Numbers k such that all k - u are Ulam numbers (A002858) where u is an Ulam number in the range k/2 <= u < k.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 19, 24, 29, 34, 39, 44
Offset: 1

Views

Author

Frank M Jackson, Dec 20 2018

Keywords

Comments

The following is a quotation from Hage-Hassan in his paper (see Link below). "The (concept of) right and left symmetry is fundamental in physics. This incites us to ask whether this symmetry is in (the) primes. Find the numbers n with a + a' = n. a, a' are primes and {a} are all the primes with: n/2 <= a < n and n = 2,3, ..."
This sequence is analogous to A320447. Instead of the sequence of primes it uses the sequence of Ulam numbers (A002858). It is conjectured that the sequence is finite and full.

Examples

			a(10)=12, because the Ulam numbers u in the range 6 <= u < 12 are {6, 8, 11}. Also the complementary set {6, 4, 1} has all its members Ulam numbers. This is the 10th occurrence of such a number.
		

Crossrefs

Programs

  • Mathematica
    Ulam[n_] := Module[{ulams={1, 2}, p}, Do[AppendTo[ulams, p=Last[ulams]; While[p++; Length[DeleteCases[Intersection[ulams, p-ulams], p/2, 1, 1]]!=2]; p], {n-2}]; ulams]; ulst=Ulam[1000]; plst[n_] := Select[ulst, Ceiling[n/2]<=#
    				

A374057 Integers k such that all k - p are primitive practical numbers where p is a primitive practical number in range k/2 <= p < k.

Original entry on oeis.org

2, 3, 4, 7, 8, 12, 21, 22, 26, 62, 72, 182
Offset: 1

Views

Author

Frank M Jackson, Jun 26 2024

Keywords

Comments

The following is a quotation from Hage-Hassan in his paper (see Link below). "The (concept of) right and left symmetry is fundamental in physics. This incites us to ask whether this symmetry is in (the) primes. Find the numbers n with a + a' = n. a, a' are primes and {a} are all the primes with: n/2 <= a < n and n = 2,3, ..."
This sequence is analogous to A320447. Instead of the sequence of primes it uses the sequence of primitive practical numbers (A267124). It is conjectured that the sequence is finite and full.

Examples

			182 is a term because the primitive practical numbers p in the range 91 <= p < 182 are {104, 140}. Also the complementary set {78, 42} has all its members primitive practical numbers.
		

Crossrefs

Programs

  • Mathematica
    PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
    DivFreeQ[n_] := Module[{plst=First/@Select[FactorInteger[n], #[[2]]>1 &], m, ok=False}, Do[If[! PracticalQ[n/plst[[m]]], ok=True, ok=False; Break[]], {m, 1, Length@plst}]; ok];
    PPracticalQ[n_] := PracticalQ[n]&&(SquareFreeQ[n]||DivFreeQ[n]);
    plst[n_] := Select[Range[Ceiling[n/2], n-1], PPracticalQ]; lst={}; Do[If[plst[n]!={}&&AllTrue[n-plst[n], PPracticalQ], AppendTo[lst, n]], {n, 1, 10000}]; lst
Showing 1-5 of 5 results.