This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320449 #5 Oct 14 2018 09:16:30 %S A320449 1,1,2,4,6,9,18,24,39,58,92,131,206 %N A320449 Number of antichains of sets whose multiset union is an integer partition of n. %e A320449 The a(1) = 1 through a(7) = 24 antichains: %e A320449 {{1}} {{2}} {{3}} {{4}} {{5}} %e A320449 {{1},{1}} {{1,2}} {{1,3}} {{1,4}} %e A320449 {{1},{2}} {{1},{3}} {{2,3}} %e A320449 {{1},{1},{1}} {{2},{2}} {{1},{4}} %e A320449 {{1},{1},{2}} {{2},{3}} %e A320449 {{1},{1},{1},{1}} {{1},{1},{3}} %e A320449 {{1},{2},{2}} %e A320449 {{1},{1},{1},{2}} %e A320449 {{1},{1},{1},{1},{1}} %e A320449 . %e A320449 {{6}} {{7}} %e A320449 {{1,5}} {{1,6}} %e A320449 {{2,4}} {{2,5}} %e A320449 {{1,2,3}} {{3,4}} %e A320449 {{1},{5}} {{1,2,4}} %e A320449 {{2},{4}} {{1},{6}} %e A320449 {{3},{3}} {{2},{5}} %e A320449 {{1},{2,3}} {{3},{4}} %e A320449 {{2},{1,3}} {{1},{2,4}} %e A320449 {{3},{1,2}} {{2},{1,4}} %e A320449 {{1},{1},{4}} {{4},{1,2}} %e A320449 {{1,2},{1,2}} {{1},{1},{5}} %e A320449 {{1},{2},{3}} {{1,2},{1,3}} %e A320449 {{2},{2},{2}} {{1},{2},{4}} %e A320449 {{1},{1},{1},{3}} {{1},{3},{3}} %e A320449 {{1},{1},{2},{2}} {{2},{2},{3}} %e A320449 {{1},{1},{1},{1},{2}} {{1},{1},{2,3}} %e A320449 {{1},{1},{1},{1},{1},{1}} {{1},{1},{1},{4}} %e A320449 {{1},{1},{2},{3}} %e A320449 {{1},{2},{2},{2}} %e A320449 {{1},{1},{1},{1},{3}} %e A320449 {{1},{1},{1},{2},{2}} %e A320449 {{1},{1},{1},{1},{1},{2}} %e A320449 {{1},{1},{1},{1},{1},{1},{1}} %t A320449 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320449 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A320449 submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{___,x_,W___}}/;submultisetQ[{Z},{W}]]]; %t A320449 antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={}; %t A320449 Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[And@@UnsameQ@@@#,antiQ[#]]&]],{n,10}] %Y A320449 Cf. A001970, A089259, A258466, A319719, A319721, A320328, A320353, A320355, A320356. %K A320449 nonn,more %O A320449 0,3 %A A320449 _Gus Wiseman_, Oct 12 2018