cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320449 Number of antichains of sets whose multiset union is an integer partition of n.

This page as a plain text file.
%I A320449 #5 Oct 14 2018 09:16:30
%S A320449 1,1,2,4,6,9,18,24,39,58,92,131,206
%N A320449 Number of antichains of sets whose multiset union is an integer partition of n.
%e A320449 The a(1) = 1 through a(7) = 24 antichains:
%e A320449   {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
%e A320449          {{1},{1}}  {{1,2}}        {{1,3}}            {{1,4}}
%e A320449                     {{1},{2}}      {{1},{3}}          {{2,3}}
%e A320449                     {{1},{1},{1}}  {{2},{2}}          {{1},{4}}
%e A320449                                    {{1},{1},{2}}      {{2},{3}}
%e A320449                                    {{1},{1},{1},{1}}  {{1},{1},{3}}
%e A320449                                                       {{1},{2},{2}}
%e A320449                                                       {{1},{1},{1},{2}}
%e A320449                                                       {{1},{1},{1},{1},{1}}
%e A320449 .
%e A320449   {{6}}                      {{7}}
%e A320449   {{1,5}}                    {{1,6}}
%e A320449   {{2,4}}                    {{2,5}}
%e A320449   {{1,2,3}}                  {{3,4}}
%e A320449   {{1},{5}}                  {{1,2,4}}
%e A320449   {{2},{4}}                  {{1},{6}}
%e A320449   {{3},{3}}                  {{2},{5}}
%e A320449   {{1},{2,3}}                {{3},{4}}
%e A320449   {{2},{1,3}}                {{1},{2,4}}
%e A320449   {{3},{1,2}}                {{2},{1,4}}
%e A320449   {{1},{1},{4}}              {{4},{1,2}}
%e A320449   {{1,2},{1,2}}              {{1},{1},{5}}
%e A320449   {{1},{2},{3}}              {{1,2},{1,3}}
%e A320449   {{2},{2},{2}}              {{1},{2},{4}}
%e A320449   {{1},{1},{1},{3}}          {{1},{3},{3}}
%e A320449   {{1},{1},{2},{2}}          {{2},{2},{3}}
%e A320449   {{1},{1},{1},{1},{2}}      {{1},{1},{2,3}}
%e A320449   {{1},{1},{1},{1},{1},{1}}  {{1},{1},{1},{4}}
%e A320449                              {{1},{1},{2},{3}}
%e A320449                              {{1},{2},{2},{2}}
%e A320449                              {{1},{1},{1},{1},{3}}
%e A320449                              {{1},{1},{1},{2},{2}}
%e A320449                              {{1},{1},{1},{1},{1},{2}}
%e A320449                              {{1},{1},{1},{1},{1},{1},{1}}
%t A320449 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A320449 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A320449 submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{___,x_,W___}}/;submultisetQ[{Z},{W}]]];
%t A320449 antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
%t A320449 Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[And@@UnsameQ@@@#,antiQ[#]]&]],{n,10}]
%Y A320449 Cf. A001970, A089259, A258466, A319719, A319721, A320328, A320353, A320355, A320356.
%K A320449 nonn,more
%O A320449 0,3
%A A320449 _Gus Wiseman_, Oct 12 2018