A320450 Number of strict antichains of sets whose multiset union is an integer partition of n.
1, 1, 1, 3, 3, 5, 10, 13, 19, 28, 47, 64, 98
Offset: 0
Examples
The a(1) = 1 through a(8) = 19 antichains: {{1}} {{2}} {{3}} {{4}} {{5}} {{6}} {{1,2}} {{1,3}} {{1,4}} {{1,5}} {{1},{2}} {{1},{3}} {{2,3}} {{2,4}} {{1},{4}} {{1,2,3}} {{2},{3}} {{1},{5}} {{2},{4}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} {{1},{2},{3}} . {{7}} {{8}} {{1,6}} {{1,7}} {{2,5}} {{2,6}} {{3,4}} {{3,5}} {{1,2,4}} {{1,2,5}} {{1},{6}} {{1,3,4}} {{2},{5}} {{1},{7}} {{3},{4}} {{2},{6}} {{1},{2,4}} {{3},{5}} {{2},{1,4}} {{1},{2,5}} {{4},{1,2}} {{1},{3,4}} {{1,2},{1,3}} {{2},{1,5}} {{1},{2},{4}} {{3},{1,4}} {{4},{1,3}} {{5},{1,2}} {{1,2},{1,4}} {{1,2},{2,3}} {{1},{2},{5}} {{1},{3},{4}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={}; Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,And@@UnsameQ@@@#,antiQ[#]]&]],{n,10}]