This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320452 #27 Apr 09 2025 15:13:37 %S A320452 1,2,4,8,15,28,52,96,177,326,600,1104,2030,3732,6858,12600,23144, %T A320452 42504,78048,143296,263068,482904,886392,1626912,2985943,5480012, %U A320452 10056946,18456056,33868851,62151788,114050884,209284710,384034660,704690938,1293071688,2372700708 %N A320452 Number of possible states when placing n tokens of 2 alternating types on 2 piles. %C A320452 Piles start empty and have no height limit. A token can only be placed on top of a pile. The starting token is fixed. %C A320452 Up to a(11) the terms are matching A008937(n+1). %H A320452 Martin Fuller, <a href="/A320452/b320452.txt">Table of n, a(n) for n = 0..40</a> %e A320452 With alternating symbols A and B on two piles (starting with A), the following states emerge after placing 4 symbols in all 2^4 possible ways: %e A320452 B B %e A320452 A A B B B B B B A A %e A320452 B B B BB A AB BA A A AB BA A BB B B B %e A320452 A_ AB AA AA AB AB AB AB BA BA BA BA AA AA BA _A %e A320452 All states are different, except the 13th state is a duplicate of the 4th. %e A320452 Hence a(4)=15. %o A320452 (Python) %o A320452 def fill(patterns, state_in, ply_nr, n_plies, n_players, n_stacks): %o A320452 if ply_nr>=n_plies: %o A320452 patterns.add(tuple(state_in)) %o A320452 else: %o A320452 symbol=chr(ord('A')+ply_nr%n_players) %o A320452 for st in range(n_stacks): %o A320452 state_out=list(state_in) %o A320452 state_out[st]+=symbol %o A320452 fill(patterns, state_out, ply_nr+1, n_plies, n_players, n_stacks) %o A320452 def A320452(n): %o A320452 n_plies, n_players, n_stacks = n, 2, 2 %o A320452 patterns=set() %o A320452 state=[""]*n_stacks %o A320452 fill(patterns, state, 0, n_plies, n_players, n_stacks) %o A320452 return len(patterns) %Y A320452 For 2 token types on 3 piles, see A320731. %K A320452 nonn %O A320452 0,2 %A A320452 _Bert Dobbelaere_, Oct 20 2018 %E A320452 a(33) onwards from _Martin Fuller_, Apr 09 2025