This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320456 #5 Oct 15 2018 22:20:52 %S A320456 1,2,3,4,6,7,8,9,12,13,14,15,16,18,19,21,24,26,27,28,30,32,35,36,37, %T A320456 38,39,42,45,48,49,52,53,54,56,57,60,61,63,64,65,69,70,72,74,75,76,78, %U A320456 81,84,89,90,91,95,96,98,104,105,106,108,111,112,113,114,117 %N A320456 Numbers whose multiset multisystem spans an initial interval of positive integers. %C A320456 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The n-th multiset multisystem is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the 78th multiset multisystem is {{},{1},{1,2}}. %e A320456 The sequence of terms together with their multiset multisystems begins: %e A320456 1: {} %e A320456 2: {{}} %e A320456 3: {{1}} %e A320456 4: {{},{}} %e A320456 6: {{},{1}} %e A320456 7: {{1,1}} %e A320456 8: {{},{},{}} %e A320456 9: {{1},{1}} %e A320456 12: {{},{},{1}} %e A320456 13: {{1,2}} %e A320456 14: {{},{1,1}} %e A320456 15: {{1},{2}} %e A320456 16: {{},{},{},{}} %e A320456 18: {{},{1},{1}} %e A320456 19: {{1,1,1}} %e A320456 21: {{1},{1,1}} %e A320456 24: {{},{},{},{1}} %e A320456 26: {{},{1,2}} %e A320456 27: {{1},{1},{1}} %e A320456 28: {{},{},{1,1}} %e A320456 30: {{},{1},{2}} %e A320456 32: {{},{},{},{},{}} %t A320456 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A320456 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; %t A320456 Select[Range[100],normQ[primeMS/@primeMS[#]]&] %Y A320456 Cf. A001222, A003963, A034691, A034729, A055932, A056239, A112798, A255906, A290103, A302242, A305052. %Y A320456 Cf. A320458, A320459, A320461, A320462, A320463, A320464, A320532, A320533. %K A320456 nonn %O A320456 1,2 %A A320456 _Gus Wiseman_, Oct 13 2018