A320458 MM-numbers of labeled simple graphs spanning an initial interval of positive integers.
1, 13, 377, 611, 1363, 1937, 2021, 2117, 16211, 17719, 26273, 27521, 44603, 56173, 58609, 83291, 91031, 91039, 99499, 141401, 143663, 146653, 147533, 153023, 159659, 167243, 170839, 203087, 237679, 243893, 265369, 271049, 276877, 290029, 301129, 315433, 467711
Offset: 1
Keywords
Examples
The sequence of terms together with their multiset multisystems begins: 1: {} 13: {{1,2}} 377: {{1,2},{1,3}} 611: {{1,2},{2,3}} 1363: {{1,3},{2,3}} 1937: {{1,2},{3,4}} 2021: {{1,4},{2,3}} 2117: {{1,3},{2,4}} 16211: {{1,2},{1,3},{1,4}} 17719: {{1,2},{1,3},{2,3}} 26273: {{1,2},{1,4},{2,3}} 27521: {{1,2},{1,3},{2,4}} 44603: {{1,2},{2,3},{2,4}} 56173: {{1,2},{1,3},{3,4}} 58609: {{1,3},{1,4},{2,3}} 83291: {{1,2},{1,4},{3,4}} 91031: {{1,3},{1,4},{2,4}} 91039: {{1,2},{2,3},{3,4}} 99499: {{1,3},{2,3},{2,4}}
Links
- Eric Weisstein's World of Mathematics, Simple Graph
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&]
Comments