This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320459 #10 Feb 16 2025 08:33:56 %S A320459 1,13,169,377,611,1363,1937,2021,2117,2197,4901,7943,10933,16211, %T A320459 17719,25181,26273,27521,28561,28717,39527,44603,56173,58609,61393, %U A320459 63713,64061,83291,86903,91031,91039,94987,99499,103259,141401,142129,143663,146653,147533 %N A320459 MM-numbers of labeled multigraphs spanning an initial interval of positive integers. %C A320459 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. %H A320459 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SimpleGraph.html">Simple Graph</a> %e A320459 The sequence of terms together with their multiset multisystems begins: %e A320459 1: {} %e A320459 13: {{1,2}} %e A320459 169: {{1,2},{1,2}} %e A320459 377: {{1,2},{1,3}} %e A320459 611: {{1,2},{2,3}} %e A320459 1363: {{1,3},{2,3}} %e A320459 1937: {{1,2},{3,4}} %e A320459 2021: {{1,4},{2,3}} %e A320459 2117: {{1,3},{2,4}} %e A320459 2197: {{1,2},{1,2},{1,2}} %e A320459 4901: {{1,2},{1,2},{1,3}} %e A320459 7943: {{1,2},{1,2},{2,3}} %e A320459 10933: {{1,2},{1,3},{1,3}} %e A320459 16211: {{1,2},{1,3},{1,4}} %e A320459 17719: {{1,2},{1,3},{2,3}} %e A320459 25181: {{1,2},{1,2},{3,4}} %e A320459 26273: {{1,2},{1,4},{2,3}} %e A320459 27521: {{1,2},{1,3},{2,4}} %e A320459 28561: {{1,2},{1,2},{1,2},{1,2}} %e A320459 28717: {{1,2},{2,3},{2,3}} %e A320459 39527: {{1,3},{1,3},{2,3}} %e A320459 44603: {{1,2},{2,3},{2,4}} %t A320459 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A320459 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; %t A320459 Select[Range[100000],And[normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&] %Y A320459 Cf. A003963, A055932, A056239, A112798, A255906, A290103, A302242, A302478, A305052, A305078. %Y A320459 Cf. A320456, A320458, A320461, A320462, A320464. %K A320459 nonn %O A320459 1,2 %A A320459 _Gus Wiseman_, Oct 13 2018