This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320462 #13 Feb 16 2025 08:33:56 %S A320462 1,7,13,49,91,161,169,299,329,343,377,611,637,667,1127,1183,1261,1363, %T A320462 1937,2021,2093,2117,2197,2303,2401,2639,3703,3887,4277,4459,4669, %U A320462 4901,6877,7567,7889,7943,8281,8671,8827,9541,10933,13559,14053,14147,14651,14819 %N A320462 MM-numbers of labeled multigraphs with loops spanning an initial interval of positive integers. %C A320462 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. %H A320462 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SimpleGraph.html">Simple Graph</a> %e A320462 The sequence of terms together with their multiset multisystems begins: %e A320462 1: {} %e A320462 7: {{1,1}} %e A320462 13: {{1,2}} %e A320462 49: {{1,1},{1,1}} %e A320462 91: {{1,1},{1,2}} %e A320462 161: {{1,1},{2,2}} %e A320462 169: {{1,2},{1,2}} %e A320462 299: {{2,2},{1,2}} %e A320462 329: {{1,1},{2,3}} %e A320462 343: {{1,1},{1,1},{1,1}} %e A320462 377: {{1,2},{1,3}} %e A320462 611: {{1,2},{2,3}} %e A320462 637: {{1,1},{1,1},{1,2}} %e A320462 667: {{2,2},{1,3}} %e A320462 1127: {{1,1},{1,1},{2,2}} %e A320462 1183: {{1,1},{1,2},{1,2}} %t A320462 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A320462 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; %t A320462 Select[Range[10000],And[normQ[primeMS/@primeMS[#]],And@@(Length[primeMS[#]]==2&/@primeMS[#])]&] %Y A320462 Cf. A003963, A055932, A056239, A112798, A255906, A290103, A302242, A305052, A305078. %Y A320462 Cf. A320456, A320458, A320459, A320461, A320533. %K A320462 nonn %O A320462 1,2 %A A320462 _Gus Wiseman_, Oct 13 2018