This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320463 #5 Oct 15 2018 22:21:37 %S A320463 1,13,113,377,611,1291,1363,1469,1937,2021,2117,3277,4537,4859,5249, %T A320463 5311,7423,8249,8507,16211,16403,16559,16783,16837,17719,20443,20453, %U A320463 24553,25477,26273,26969,27521,34567,37439,39437,41689,42011,42137,42601,43873,43957 %N A320463 MM-numbers of labeled simple hypergraphs with no singletons spanning an initial interval of positive integers. %C A320463 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. %H A320463 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hypergraph">Hypergraph</a> %e A320463 The sequence of terms together with their multiset multisystems begins: %e A320463 1: {} %e A320463 13: {{1,2}} %e A320463 113: {{1,2,3}} %e A320463 377: {{1,2},{1,3}} %e A320463 611: {{1,2},{2,3}} %e A320463 1291: {{1,2,3,4}} %e A320463 1363: {{1,3},{2,3}} %e A320463 1469: {{1,2},{1,2,3}} %e A320463 1937: {{1,2},{3,4}} %e A320463 2021: {{1,4},{2,3}} %e A320463 2117: {{1,3},{2,4}} %e A320463 3277: {{1,3},{1,2,3}} %e A320463 4537: {{1,2},{1,3,4}} %e A320463 4859: {{1,4},{1,2,3}} %e A320463 5249: {{1,3},{1,2,4}} %e A320463 5311: {{2,3},{1,2,3}} %e A320463 7423: {{1,2},{2,3,4}} %e A320463 8249: {{2,4},{1,2,3}} %e A320463 8507: {{2,3},{1,2,4}} %e A320463 16211: {{1,2},{1,3},{1,4}} %t A320463 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A320463 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; %t A320463 Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],PrimeOmega[#]>1]&/@primeMS[#])]&] %Y A320463 Cf. A003963, A005117, A055932, A056239, A112798, A255906, A290103, A302242, A302478, A305052. %Y A320463 Cf. A320456, A320458, A320464, A320532, A320533. %K A320463 nonn %O A320463 1,2 %A A320463 _Gus Wiseman_, Oct 13 2018