cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320518 Zumkeller primes: k is prime and k + 1 is Zumkeller.

This page as a plain text file.
%I A320518 #18 Jul 18 2020 04:32:50
%S A320518 5,11,19,23,29,41,47,53,59,79,83,89,101,103,107,113,131,137,139,149,
%T A320518 167,173,179,191,197,223,227,233,239,251,257,263,269,271,281,293,307,
%U A320518 311,317,347,349,353,359,367,379,383,389,401,419,431,439,443,461,463
%N A320518 Zumkeller primes: k is prime and k + 1 is Zumkeller.
%H A320518 Amiram Eldar, <a href="/A320518/b320518.txt">Table of n, a(n) for n = 1..10000</a>
%p A320518 isZumkellerPrime := n -> isprime(n) and isZumkeller(n+1):
%p A320518 A320518_list := upto -> select(isZumkellerPrime, [$1..upto]): A320518_list(500);
%t A320518 ZumkellerQ[n_] := Module[{d = Divisors[n], ds, x}, ds = Total[d]; If[OddQ[ds], False, SeriesCoefficient[Product[1 + x^i, {i, d}], {x, 0, ds/2}] > 0]];
%t A320518 Select[Prime[Range[100]], ZumkellerQ[# + 1]&] (* _Jean-François Alcover_, Mar 01 2019 *)
%Y A320518 Cf. A083207, A000040.
%K A320518 nonn
%O A320518 1,1
%A A320518 _Peter Luschny_, Oct 14 2018