This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320523 #36 Dec 18 2018 02:27:12 %S A320523 2,21,21,11,2,6,5,21,11,2,6,21,21,11,2,6,21,5,11,2,6,21,21,3,2,2,21, %T A320523 21,11,2,6,5,21,11,2,6,21,21,11,2,6,21,5,11,2,6,21,21,3,2,2,21,21,11, %U A320523 2,6,5,21,11,2,6,21,21,11,2,6,21,5,11,2,6,21,21,3,2 %N A320523 Smallest m > 1 such that either n^m == n (mod 25) or n^m == 0 (mod 25). %C A320523 This is a periodic sequence. In fact, a(n) (mod 25) == a(n + k*25) (mod 25), for any k >= 0. The maximum value of a(n) is 21 = lambda(25) + 1 = 20 + 1, since 20 is the Carmichael's lambda value in 25. %C A320523 This sequence, omitting a(n = 10*k), predicts the convergence speed of any tetration a^^b, for any b >= a > 2, since A317905(n) = 1 iff a(n) > 5 and A317905(n) >= 2 otherwise (for any 2 <= a(n) <= 5). %D A320523 M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6. %H A320523 J. Jimenez Urroz and J. Luis A. Yebra, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Yebra/yebra4.html">On the equation a^x == x (mod b^n)</a>, J. Int. Seq. 12 (2009) #09.8.8. %H A320523 M. Ripà, <a href="https://www.researchgate.net/publication/328493277_On_the_Convergence_Speed_of_Tetration">On the Convergence Speed of Tetration</a>, ResearchGate (2018). %H A320523 M. Ripà, <a href="http://vixra.org/abs/1810.0223">On the Convergence Speed of Tetration</a>, viXra (2018). %H A320523 Wikipedia, <a href="https://en.wikipedia.org/wiki/Carmichael_function">Charmichael function</a> %H A320523 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a> %H A320523 Wikipedia, <a href="https://en.wikipedia.org/wiki/Euler%27s_totient_function">Euler's totient function</a> %F A320523 For any k >= 0, %F A320523 a( 1 + k*25) = 2; %F A320523 a( 2 + k*25) = 21; %F A320523 a( 3 + k*25) = 21; %F A320523 a( 4 + k*25) = 11; %F A320523 a( 5 + k*25) = 2; %F A320523 a( 6 + k*25) = 6; %F A320523 a( 7 + k*25) = 5; %F A320523 a( 8 + k*25) = 21; %F A320523 a( 9 + k*25) = 11; %F A320523 a(10 + k*25) = 2; %F A320523 a(11 + k*25) = 6; %F A320523 a(12 + k*25) = 21; %F A320523 a(13 + k*25) = 21; %F A320523 a(14 + k*25) = 11; %F A320523 a(15 + k*25) = 2; %F A320523 a(16 + k*25) = 6; %F A320523 a(17 + k*25) = 21; %F A320523 a(18 + k*25) = 5; %F A320523 a(19 + k*25) = 11; %F A320523 a(20 + k*25) = 2; %F A320523 a(21 + k*25) = 6; %F A320523 a(22 + k*25) = 21; %F A320523 a(23 + k*25) = 21; %F A320523 a(24 + k*25) = 3; %F A320523 a(25*(k + 1))= 2. %e A320523 For n = 41, a(41) = a(16) = 6, since 16^6 mod 25 = 16. %t A320523 With[{k = 25}, Table[If[Mod[n, 5] == 0, 2, SelectFirst[Range[2, CarmichaelLambda@ k + 1], PowerMod[n, #, k] == Mod[n, k] &]], {n, 75}]] (* _Michael De Vlieger_, Oct 15 2018 *) %o A320523 (PARI) a(n) = {my(m=2); while ((Mod(n, 25)^m != n) && (Mod(n, 25)^m != 0), m++); m;} \\ _Michel Marcus_, Oct 16 2018 %Y A320523 Cf. A067251, A317905. %K A320523 nonn,easy %O A320523 1,1 %A A320523 _Marco Ripà_, Oct 14 2018