cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320526 a(n) is the number of chiral pairs of color patterns (set partitions) in a row of length n using exactly 3 colors (subsets).

This page as a plain text file.
%I A320526 #19 Mar 13 2024 13:37:24
%S A320526 0,0,0,2,10,40,141,464,1480,4600,14145,43052,130480,393820,1186521,
%T A320526 3568784,10725760,32213200,96714465,290284052,871142800,2613981700,
%U A320526 7843080201,23531425304,70598731840,211804847800,635432109585,1906330676252,5719061512720,17157321139180
%N A320526 a(n) is the number of chiral pairs of color patterns (set partitions) in a row of length n using exactly 3 colors (subsets).
%C A320526 Two color patterns are equivalent if we permute the colors. Chiral color patterns must not be equivalent if we reverse the order of the pattern.
%H A320526 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (6, -6, -24, 49, 6, -66, 36).
%F A320526 a(n) = (S2(n,k) - A(n,k))/2, where k=3 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
%F A320526 G.f.: (x^3 / Product_{k=1..3} (1 - k*x) - x^3*(1 + 2 x)/((1 - 2 x^2)*(1 - 3 x^2))) / 2.
%F A320526 a(n) = (A000392(n) - A304973(n)) / 2 = A000392(n) - A056327(n) = A056327(n) - A304973(n).
%e A320526 For a(4)=2, the two chiral pairs are AABC-ABCC and ABAC-ABCB.
%t A320526 k=3; Table[(StirlingS2[n,k] - If[EvenQ[n], 2StirlingS2[n/2+1,3] - 2StirlingS2[n/2,3], StirlingS2[(n+3)/2,3] - StirlingS2[(n+1)/2,3]])/2, {n, 1, 30}]
%t A320526 Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
%t A320526 k = 3; Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 30}]
%t A320526 LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 0, 2, 10, 40,
%t A320526   141}, 40]
%o A320526 (PARI) m=40; v=concat([0,0,0,2,10,40,141], vector(m-7)); for(n=8, m, v[n] = 6*v[n-1] -6*v[n-2] -24*v[n-3] +49*v[n-4] +6*v[n-5] -66*v[n-6] +36*v[n-7] ); v \\ _G. C. Greubel_, Oct 16 2018
%o A320526 (Magma) I:=[0,0,0,2,10,40,141]; [n le 7 select I[n] else 6*Self(n-1) -6*Self(n-2) -24*Self(n-3) +49*Self(n-4) +6*Self(n-5) -66*Self(n-6) +36*Self(n-7): n in [1..40]]; // _G. C. Greubel_, Oct 16 2018
%Y A320526 Column 3 of A320525.
%Y A320526 Cf. A000392 (oriented), A056327 (unoriented), A304973 (achiral).
%K A320526 nonn,easy
%O A320526 1,4
%A A320526 _Robert A. Russell_, Oct 14 2018