cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320539 (1/2) * number of ways to select 3 distinct collinear points from a rectangle of grid points with side lengths j and k, written as triangle T(j,k), j<=k.

This page as a plain text file.
%I A320539 #8 Oct 22 2018 14:28:24
%S A320539 0,1,4,4,10,22,10,21,42,76,20,39,70,120,186,35,65,112,184,279,412,56,
%T A320539 100,166,264,390,566,772,84,146,236,367,532,759,1026,1356,120,205,324,
%U A320539 494,704,991,1326,1740,2224,165,278,432,647,913,1271,1686,2196,2793,3496
%N A320539 (1/2) * number of ways to select 3 distinct collinear points from a rectangle of grid points with side lengths j and k, written as triangle T(j,k), j<=k.
%C A320539 Permutations of the 3 points are not counted separately.
%e A320539 The triangle begins:
%e A320539     0
%e A320539     1    4
%e A320539     4   10   22
%e A320539    10   21   42   76
%e A320539    20   39   70  120  186
%e A320539    35   65  112  184  279  412
%e A320539    56  100  166  264  390  566  772
%e A320539 .
%e A320539 a(2) = T(1,2) = 1, because the grid points on the two longer sides of the rectangle are collinear: (0,0) (0,1) (0,2) and (1,0) (1,1) (2,2).
%e A320539 a(3) = T(2,2) = 4, because there are 8 triples of collinear points:
%e A320539   (0,0) (0,1) (0,2),
%e A320539   (0,0) (1,0) (2,0),
%e A320539   (0,0) (1,1) (2,2),
%e A320539   (0,1) (1,1) (2,1),
%e A320539   (0,2) (1,1) (2,0),
%e A320539   (0,2) (1,2) (2,2),
%e A320539   (1,0) (1,1) (1,2),
%e A320539   (2,0) (2,1) (2,2).
%Y A320539 A000292, A320540, A320541, A320543.
%K A320539 nonn,tabl
%O A320539 1,3
%A A320539 _Hugo Pfoertner_, Oct 15 2018