This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320541 #20 Aug 17 2021 10:13:33 %S A320541 1,3,8,6,16,31,10,26,50,80,15,39,75,120,179,21,54,103,164,244,332,28, %T A320541 72,137,218,324,441,585,36,92,175,278,413,562,745,948,45,115,218,346, %U A320541 514,699,926,1178,1463,55,140,265,420,623,846,1120,1424,1768,2136 %N A320541 Triangle read by rows: T(n,k) (1<=k<=n) = Sum_{i=1..n, j=1..k, gcd(i,j)=1} (n+1-i)*(k+1-j). %C A320541 T(n,k) = (1/4) * number of ways to select 3 distinct points forming a triangle of unsigned area = 1/2 from a rectangle of grid points with side lengths n and k. %C A320541 Permutations of the 3 points are not counted separately. %H A320541 Seiichi Manyama, <a href="/A320541/b320541.txt">Rows n = 1..140, flattened</a> %e A320541 The triangle begins: %e A320541 1 %e A320541 3 8 %e A320541 6 16 31 %e A320541 10 26 50 80 %e A320541 15 39 75 120 179 %e A320541 21 54 103 164 244 332 %e A320541 28 72 137 218 324 441 585 %e A320541 ... %e A320541 a(1) = 1 because 4 triangles of area 1/2 in a [0 1]X[0 1] square can be formed by cutting the unit square into 2 triangles along the diagonals. %p A320541 T := proc(m,n) local a,i,j; a:=0; %p A320541 for i from 1 to m do for j from 1 to n do %p A320541 if gcd(i,j)=1 then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end; %p A320541 for m from 1 to 12 do lprint([seq(T(m,n),n=1..m)]); od: # _N. J. A. Sloane_, Feb 04 2020 %Y A320541 Cf. A000217, A115004 (main diagonal), A320539, A320543, A333292. %Y A320541 This triangle is equivalent to the table in A114999. %K A320541 nonn,tabl %O A320541 1,2 %A A320541 _Hugo Pfoertner_, Oct 15 2018 %E A320541 Replaced definition (now a comment) by explicit formula. - _N. J. A. Sloane_, Feb 04 2020