cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320569 a(n) = [x^n] exp(Sum_{k>=1} sigma_n(k)*x^k/(k*(1 - x)^k)).

This page as a plain text file.
%I A320569 #6 Oct 15 2018 22:20:25
%S A320569 1,1,4,25,272,5028,173754,11639691,1488266409,375932630887,
%T A320569 190981026883402,191456188687238845,388595050299100664773,
%U A320569 1602566853459119962711220,13153292027392201138778117308,220500920265786114712328027650814,7523329040995438987558888118224263531
%N A320569 a(n) = [x^n] exp(Sum_{k>=1} sigma_n(k)*x^k/(k*(1 - x)^k)).
%F A320569 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k/(1 - x)^k)^(k^(n-1)).
%p A320569 seq(coeff(series(mul((1-x^k/(1-x)^k)^(-k^(n-1)),k=1..n),x,n+1), x, n), n = 0 .. 15); # _Muniru A Asiru_, Oct 15 2018
%t A320569 Table[SeriesCoefficient[Exp[Sum[DivisorSigma[n, k] x^k/(k (1 - x)^k), {k, 1, n}]], {x, 0, n}], {n, 0, 16}]
%t A320569 Table[SeriesCoefficient[Product[1/(1 - x^k/(1 - x)^k)^(k^(n - 1)), {k, 1, n}], {x, 0, n}], {n, 0, 16}]
%Y A320569 Cf. A218482, A319361, A320563.
%K A320569 nonn
%O A320569 0,3
%A A320569 _Ilya Gutkovskiy_, Oct 15 2018