This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320574 #10 Oct 22 2018 01:38:58 %S A320574 1,1,2,1,1,3,6,4,4,2,6,3,18,9 %N A320574 a(n) gives the number of configurations of non-attacking rooks up to symmetry on an n X n chessboard such that the number of distinct distances between the rooks is given by A320448(n). %C A320574 Conjecture: a(n) = A320573(n)/8 for all n > 3. %H A320574 Giovanni Resta, <a href="/A320574/a320574.pdf">Illustration of a(3)-a(14)</a> %e A320574 For n = 6 the a(6) = 3 configurations with A320448(6) = 11 distinct distances are: %e A320574 +---+---+---+---+---+---+ %e A320574 | * | | | | | | %e A320574 +---+---+---+---+---+---+ %e A320574 | | | * | | | | %e A320574 +---+---+---+---+---+---+ %e A320574 | | * | | | | | %e A320574 +---+---+---+---+---+---+, %e A320574 | | | | | * | | %e A320574 +---+---+---+---+---+---+ %e A320574 | | | | | | * | %e A320574 +---+---+---+---+---+---+ %e A320574 | | | | * | | | %e A320574 +---+---+---+---+---+---+ %e A320574 +---+---+---+---+---+---+ %e A320574 | * | | | | | | %e A320574 +---+---+---+---+---+---+ %e A320574 | | | * | | | | %e A320574 +---+---+---+---+---+---+ %e A320574 | | | | | | * | %e A320574 +---+---+---+---+---+---+, and %e A320574 | | | | * | | | %e A320574 +---+---+---+---+---+---+ %e A320574 | | | | | * | | %e A320574 +---+---+---+---+---+---+ %e A320574 | | * | | | | | %e A320574 +---+---+---+---+---+---+ %e A320574 +---+---+---+---+---+---+ %e A320574 | * | | | | | | %e A320574 +---+---+---+---+---+---+ %e A320574 | | * | | | | | %e A320574 +---+---+---+---+---+---+ %e A320574 | | | | | * | | %e A320574 +---+---+---+---+---+---+. %e A320574 | | | | * | | | %e A320574 +---+---+---+---+---+---+ %e A320574 | | | | | | * | %e A320574 +---+---+---+---+---+---+ %e A320574 | | | * | | | | %e A320574 +---+---+---+---+---+---+ %Y A320574 Cf. A319476, A320575, A320576, A320448, A320573, A320574. %K A320574 nonn,more %O A320574 1,3 %A A320574 _Peter Kagey_, Oct 15 2018 %E A320574 a(10)-a(14) from _Giovanni Resta_, Oct 21 2018