This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320578 #25 Oct 18 2018 09:46:42 %S A320578 1,1,1,3,2,1,10,10,3,1,43,54,18,4,1,223,351,113,27,5,1,1364,2613,833, %T A320578 186,37,6,1,9643,21965,6921,1461,274,48,7,1,77545,205780,64128,12727, %U A320578 2253,378,60,8,1,699954,2127068,655391,122345,20230,3230,499,73,9,1 %N A320578 Triangle read by rows: T(n,k) is the number of permutation graphs on n vertices with domination number k, with 1 <= k <= n. %H A320578 Theresa Baren, Michael Cory, Mia Friedberg, Peter Gardner, James Hammer, Joshua Harrington, Daniel McGinnis, Riley Waechter, Tony W. H. Wong, <a href="https://arxiv.org/abs/1810.03409">On the Domination Number of Permutation Graphs and an Application to Strong Fixed Points</a>, arXiv:1810.03409 [math.CO], 2018. %F A320578 T(n,k) = A320579(n,k) + A320583(n,k). %F A320578 T(n,1) = A320583(n,1). %e A320578 Triangle begins: %e A320578 1; %e A320578 1, 1; %e A320578 3, 2, 1; %e A320578 10, 10, 3, 1; %e A320578 43, 54, 18, 4, 1; %e A320578 223, 351, 113, 27, 5, 1; %e A320578 ... %o A320578 (Python) %o A320578 import networkx as nx %o A320578 import math %o A320578 def permutation(lst): %o A320578 if len(lst) == 0: %o A320578 return [] %o A320578 if len(lst) == 1: %o A320578 return [lst] %o A320578 l = [] %o A320578 for i in range(len(lst)): %o A320578 m = lst[i] %o A320578 remLst = lst[:i] + lst[i + 1:] %o A320578 for p in permutation(remLst): %o A320578 l.append([m] + p) %o A320578 return l %o A320578 def generatePermsOfSizeN(n): %o A320578 lst = [] %o A320578 for i in range(n): %o A320578 lst.append(i+1) %o A320578 return permutation(lst) %o A320578 def powersetHelper(A): %o A320578 if A == []: %o A320578 return [[]] %o A320578 a = A[0] %o A320578 incomplete_pset = powersetHelper(A[1:]) %o A320578 rest = [] %o A320578 for set in incomplete_pset: %o A320578 rest.append([a] + set) %o A320578 return rest + incomplete_pset %o A320578 def powerset(A): %o A320578 ps = powersetHelper(A) %o A320578 ps.sort(key = len) %o A320578 return ps %o A320578 print(ps) %o A320578 def countDomNumbersOnN(n): %o A320578 lst=[] %o A320578 perms = generatePermsOfSizeN(n) %o A320578 for i in range(n): %o A320578 lst.append(i+1) %o A320578 ps = powerset(lst) %o A320578 dic={} %o A320578 for perm in perms: %o A320578 tempGraph = nx.Graph() %o A320578 tempGraph.add_nodes_from(perm) %o A320578 for i in range(len(perm)): %o A320578 for k in range(i+1, len(perm)): %o A320578 if perm[k] < perm[i]: %o A320578 tempGraph.add_edge(perm[i], perm[k]) %o A320578 for p in ps: %o A320578 if nx.is_dominating_set(tempGraph,p): %o A320578 dom = len(p) %o A320578 if dom in dic: %o A320578 dic[dom] += 1 %o A320578 break %o A320578 else: %o A320578 dic[dom] = 1 %o A320578 break %o A320578 return dic %Y A320578 Cf. A320579, A320583 %K A320578 nonn,hard,tabl %O A320578 1,4 %A A320578 _James Hammer_, _Daniel A. McGinnis_, Oct 15 2018