This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320579 #21 Oct 18 2018 09:46:29 %S A320579 1,2,1,7,3,1,26,18,4,1,115,111,27,5,1,592,771,186,37,6,1,3532,5906, %T A320579 1459,274,48,7,1,24212,49982,12643,2253,378,60,8,1,188869,466314, %U A320579 120252,20228,3230,499,73,9,1 %N A320579 Triangle read by rows: T(n,k) is the number of disconnected permutation graphs on n vertices with domination number k, with 2 <= k <= n. %H A320579 Theresa Baren, Michael Cory, Mia Friedberg, Peter Gardner, James Hammer, Joshua Harrington, Daniel McGinnis, Riley Waechter, Tony W. H. Wong, <a href="https://arxiv.org/abs/1810.03409">On the Domination Number of Permutation Graphs and an Application to Strong Fixed Points</a>, arXiv:1810.03409 [math.CO], 2018. %F A320579 T(n,k) = A320578(n,k) - A320583(n,k). %e A320579 Triangle begins: %e A320579 1; %e A320579 2, 1; %e A320579 7, 3, 1; %e A320579 26, 18, 4, 1; %e A320579 115, 111, 27, 5, 1; %e A320579 592, 771, 186, 37, 6, 1; %e A320579 ... %o A320579 (Python) %o A320579 import networkx as nx %o A320579 import math %o A320579 def permutation(lst): %o A320579 if len(lst) == 0: %o A320579 return [] %o A320579 if len(lst) == 1: %o A320579 return [lst] %o A320579 l = [] %o A320579 for i in range(len(lst)): %o A320579 m = lst[i] %o A320579 remLst = lst[:i] + lst[i + 1:] %o A320579 for p in permutation(remLst): %o A320579 l.append([m] + p) %o A320579 return l %o A320579 def generatePermsOfSizeN(n): %o A320579 lst = [] %o A320579 for i in range(n): %o A320579 lst.append(i+1) %o A320579 return permutation(lst) %o A320579 def powersetHelper(A): %o A320579 if A == []: %o A320579 return [[]] %o A320579 a = A[0] %o A320579 incomplete_pset = powersetHelper(A[1:]) %o A320579 rest = [] %o A320579 for set in incomplete_pset: %o A320579 rest.append([a] + set) %o A320579 return rest + incomplete_pset %o A320579 def powerset(A): %o A320579 ps = powersetHelper(A) %o A320579 ps.sort(key = len) %o A320579 return ps %o A320579 print(ps) %o A320579 def countdisDomNumbersOnN(n): %o A320579 lst=[] %o A320579 l=[] %o A320579 perms = generatePermsOfSizeN(n) %o A320579 for i in range(n): %o A320579 lst.append(i+1) %o A320579 ps = powerset(lst) %o A320579 dic={} %o A320579 for perm in perms: %o A320579 tempGraph = nx.Graph() %o A320579 tempGraph.add_nodes_from(perm) %o A320579 for i in range(len(perm)): %o A320579 for k in range(i+1, len(perm)): %o A320579 if perm[k] < perm[i]: %o A320579 tempGraph.add_edge(perm[i], perm[k]) %o A320579 if nx.is_connected(tempGraph)==False: %o A320579 for p in ps: %o A320579 if nx.is_dominating_set(tempGraph,p): %o A320579 dom = len(p) %o A320579 if dom in dic: %o A320579 dic[dom] += 1 %o A320579 break %o A320579 else: %o A320579 dic[dom] = 1 %o A320579 break %o A320579 return dic %Y A320579 CF. A320578, A320583. %K A320579 nonn,tabl,hard,more %O A320579 2,2 %A A320579 _James Hammer_, _Daniel A. McGinnis_, Oct 15 2018