This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320583 #18 Oct 18 2018 08:59:21 %S A320583 1,1,3,10,3,43,28,223,236,2,1364,1842,62,9643,18433,1015,2,77545, %T A320583 181568,14146,84,699954,1938199,189077,2093,2 %N A320583 Irregular triangle read by rows: T(n,k) is the number of connected permutation graphs on n vertices with domination number k, with 1 <= k <= floor(n/2). %H A320583 Theresa Baren, Michael Cory, Mia Friedberg, Peter Gardner, James Hammer, Joshua Harrington, Daniel McGinnis, Riley Waechter, Tony W. H. Wong, <a href="https://arxiv.org/abs/1810.03409">On the Domination Number of Permutation Graphs and an Application to Strong Fixed Points</a>, arXiv:1810.03409 [math.CO], 2018. %F A320583 T(n,n/2) = 2 for even n. See Theorem 4.5 in the link by Theresa Baren, et al. %F A320583 T(n,k) = A320578(n,k) - A320579(n,k). %F A320583 T(n,1) = A320578(n,1). %e A320583 Triangle begins: %e A320583 1; %e A320583 1; %e A320583 3; %e A320583 10, 3; %e A320583 43, 28; %e A320583 223, 236, 2; %e A320583 ... %o A320583 (Python) %o A320583 import networkx as nx %o A320583 import math %o A320583 def permutation(lst): %o A320583 if len(lst) == 0: %o A320583 return [] %o A320583 if len(lst) == 1: %o A320583 return [lst] %o A320583 l = [] %o A320583 for i in range(len(lst)): %o A320583 m = lst[i] %o A320583 remLst = lst[:i] + lst[i + 1:] %o A320583 for p in permutation(remLst): %o A320583 l.append([m] + p) %o A320583 return l %o A320583 def generatePermsOfSizeN(n): %o A320583 lst = [] %o A320583 for i in range(n): %o A320583 lst.append(i+1) %o A320583 return permutation(lst) %o A320583 def powersetHelper(A): %o A320583 if A == []: %o A320583 return [[]] %o A320583 a = A[0] %o A320583 incomplete_pset = powersetHelper(A[1:]) %o A320583 rest = [] %o A320583 for set in incomplete_pset: %o A320583 rest.append([a] + set) %o A320583 return rest + incomplete_pset %o A320583 def powerset(A): %o A320583 ps = powersetHelper(A) %o A320583 ps.sort(key = len) %o A320583 return ps %o A320583 print(ps) %o A320583 def countcnctdDomNumbersOnN(n): %o A320583 lst=[] %o A320583 l=[] %o A320583 perms = generatePermsOfSizeN(n) %o A320583 for i in range(n): %o A320583 lst.append(i+1) %o A320583 ps = powerset(lst) %o A320583 dic={} %o A320583 for perm in perms: %o A320583 tempGraph = nx.Graph() %o A320583 tempGraph.add_nodes_from(perm) %o A320583 for i in range(len(perm)): %o A320583 for k in range(i+1, len(perm)): %o A320583 if perm[k] < perm[i]: %o A320583 tempGraph.add_edge(perm[i], perm[k]) %o A320583 if nx.is_connected(tempGraph)==True: %o A320583 for p in ps: %o A320583 if nx.is_dominating_set(tempGraph,p): %o A320583 dom = len(p) %o A320583 if dom in dic: %o A320583 dic[dom] += 1 %o A320583 break %o A320583 else: %o A320583 dic[dom] = 1 %o A320583 break %o A320583 return dic %Y A320583 Cf. A320578, A320579. %K A320583 nonn,hard,tabf,more %O A320583 1,3 %A A320583 _James Hammer_, _Daniel A. McGinnis_, Oct 15 2018