cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320602 Irregular table read by rows: T(n,k) = (k+s)^(k+s) mod n, s = lcm(n, A002322(n)) = A174824(n), 0 <= k <= s - 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 4, 2, 1, 0, 1, 3, 1, 4, 0, 1, 1, 3, 1, 0, 1, 2, 4, 4, 0, 1, 4, 3, 4, 5, 0, 1, 4, 6, 4, 3, 1, 0, 1, 1, 4, 2, 1, 6, 0, 1, 2, 5, 1, 5, 1, 0, 1, 4, 1, 4, 4, 6, 0, 1, 1, 3, 2, 6, 1, 0, 1, 2, 2, 1, 2, 6, 0, 1, 0, 3, 0, 5, 0, 7
Offset: 1

Views

Author

Jianing Song, Oct 17 2018

Keywords

Comments

A174824(n) is the period of the sequence {k^k mod n}.
If n > 1 is factored as Product_{i=1..m} (p_i)^(e_i), then {k^k mod n : k > e} is purely periodic, e = max_{i=1..m} (p_i)*floor((e_i - 1)/(p_i)). For n > 1, {k^k mod n : k > 0} is purely periodic iff e_i <= p_i, 1 <= i <= m.

Examples

			Table starts
n = 1: 0,
n = 2: 0, 1,
n = 3: 0, 1, 1, 0, 1, 2,
n = 4: 0, 1, 0, 3,
n = 5: 0, 1, 4, 2, 1, 0, 1, 3, 1, 4, 0, 1, 1, 3, 1, 0, 1, 2, 4, 4,
n = 6: 0, 1, 4, 3, 4, 5,
n = 7: 0, 1, 4, 6, 4, 3, 1, 0, 1, 1, 4, 2, 1, 6, 0, 1, 2, 5, 1, 5, 1, 0, 1, 4, 1, 4, 4, 6, 0, 1, 1, 3, 2, 6, 1, 0, 1, 2, 2, 1, 2, 6,
n = 8: 0, 1, 0, 3, 0, 5, 0, 7,
n = 9: 0, 1, 4, 0, 4, 2, 0, 7, 1, 0, 1, 5, 0, 4, 7, 0, 7, 8,
n = 10: 0, 1, 4, 7, 6, 5, 6, 3, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 4, 9,
		

Crossrefs

Programs

  • PARI
    T(n,k) = my(s=lcm(n, lcm(znstar(n)[2]))); lift(Mod(k+s, n)^(k+s))
    tabf(nn) = for(n=1, nn, for(k=0, lcm(n, lcm(znstar(n)[2]))-1, print1(T(n,k)", ")); print)

Formula

T(n,k) = k^k mod n iff: let p be any prime factor of k, then n is not divisible by p^(k+1).