This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320628 #15 Feb 02 2021 04:34:51 %S A320628 1,2,4,7,8,13,14,16,19,23,26,28,29,32,37,38,43,46,47,49,52,53,56,58, %T A320628 61,64,71,73,74,76,79,86,89,91,92,94,97,98,101,103,104,106,107,112, %U A320628 113,116,122,128,131,133,137,139,142,146,148,149,151,152,158,161,163 %N A320628 Products of primes of nonprime index. %C A320628 The index of a prime number n is the number m such that n is the m-th prime. %C A320628 The asymptotic density of this sequence is Product_{p in A006450} (1 - 1/p) = 1/(Sum_{n>=1} 1/A076610(n)) < 1/3. - _Amiram Eldar_, Feb 02 2021 %H A320628 Amiram Eldar, <a href="/A320628/b320628.txt">Table of n, a(n) for n = 1..10000</a> %e A320628 The sequence of terms begins: %e A320628 1 = 1 %e A320628 2 = prime(1) %e A320628 4 = prime(1)^2 %e A320628 7 = prime(4) %e A320628 8 = prime(1)^3 %e A320628 13 = prime(6) %e A320628 14 = prime(1)*prime(4) %e A320628 16 = prime(1)^4 %e A320628 19 = prime(8) %e A320628 23 = prime(9) %e A320628 26 = prime(1)*prime(6) %e A320628 28 = prime(1)^2*prime(4) %e A320628 29 = prime(10) %e A320628 32 = prime(1)^5 %e A320628 37 = prime(12) %e A320628 38 = prime(1)*prime(8) %e A320628 43 = prime(14) %e A320628 46 = prime(1)*prime(9) %e A320628 47 = prime(15) %e A320628 49 = prime(4)^2 %e A320628 52 = prime(1)^2*prime(6) %e A320628 53 = prime(16) %e A320628 56 = prime(1)^3*prime(4) %e A320628 58 = prime(1)*prime(10) %e A320628 61 = prime(18) %e A320628 64 = prime(1)^6 %e A320628 71 = prime(20) %e A320628 73 = prime(21) %e A320628 74 = prime(1)*prime(12) %e A320628 76 = prime(1)^2*prime(8) %e A320628 79 = prime(22) %e A320628 86 = prime(1)*prime(14) %e A320628 89 = prime(24) %e A320628 91 = prime(4)*prime(6) %e A320628 92 = prime(1)^2*prime(9) %e A320628 94 = prime(1)*prime(15) %e A320628 97 = prime(25) %e A320628 98 = prime(1)*prime(4)^2 %t A320628 Select[Range[100],And@@Not/@PrimeQ/@PrimePi/@First/@FactorInteger[#]&] %Y A320628 Cf. A018252, A056239, A290103, A302242, A302478, A320533, A320629, A320630, A320631, A320633. %Y A320628 Complement of A331386. %Y A320628 Positions of zeros in A257994. %Y A320628 Primes of prime index are A006450. %Y A320628 Primes of nonprime index are A007821. %Y A320628 Products of primes of prime index are A076610. %Y A320628 Products of primes of nonprime index are this sequence. %Y A320628 The number of prime prime indices is given by A257994. %Y A320628 The number of nonprime prime indices is given by A330944. %Y A320628 Cf. A000040, A000720, A001222, A112798, A295665. %K A320628 nonn %O A320628 1,2 %A A320628 _Gus Wiseman_, Oct 18 2018