A320634 Odd numbers whose multiset multisystem is a multiset partition spanning an initial interval of positive integers (odd = no empty sets).
1, 3, 7, 9, 13, 15, 19, 21, 27, 35, 37, 39, 45, 49, 53, 57, 61, 63, 65, 69, 75, 81, 89, 91, 95, 105, 111, 113, 117, 131, 133, 135, 141, 143, 145, 147, 151, 159, 161, 165, 169, 171, 175, 183, 185, 189, 195, 207, 223, 225, 243, 245, 247, 251, 259, 265, 267, 273
Offset: 1
Keywords
Examples
The sequence of terms together with their multiset multisystems begins: 1: {} 3: {{1}} 7: {{1,1}} 9: {{1},{1}} 13: {{1,2}} 15: {{1},{2}} 19: {{1,1,1}} 21: {{1},{1,1}} 27: {{1},{1},{1}} 35: {{2},{1,1}} 37: {{1,1,2}} 39: {{1},{1,2}} 45: {{1},{1},{2}} 49: {{1,1},{1,1}} 53: {{1,1,1,1}} 57: {{1},{1,1,1}} 61: {{1,2,2}} 63: {{1},{1},{1,1}} 65: {{2},{1,2}} 69: {{1},{2,2}} 75: {{1},{2},{2}} 81: {{1},{1},{1},{1}} 89: {{1,1,1,2}} 91: {{1,1},{1,2}} 95: {{2},{1,1,1}} 105: {{1},{2},{1,1}} 111: {{1},{1,1,2}} 113: {{1,2,3}} 117: {{1},{1},{1,2}} 131: {{1,1,1,1,1}} 133: {{1,1},{1,1,1}} 135: {{1},{1},{1},{2}}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; Select[Range[1,100,2],normQ[primeMS/@primeMS[#]]&]
Comments