cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320635 MM-numbers of simple labeled connected graphs spanning an initial interval of positive integers.

Original entry on oeis.org

13, 377, 611, 1363, 16211, 17719, 26273, 27521, 44603, 56173, 58609, 83291, 91031, 91039, 99499, 141401, 147533, 203087, 301129, 315433, 467711, 761917, 1183403, 1280669, 1293487, 1917929, 2075567, 2174159, 2220907, 2415439, 2640131
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
       13: {{1,2}}
      377: {{1,2},{1,3}}
      611: {{1,2},{2,3}}
     1363: {{1,3},{2,3}}
    16211: {{1,2},{1,3},{1,4}}
    17719: {{1,2},{1,3},{2,3}}
    26273: {{1,2},{1,4},{2,3}}
    27521: {{1,2},{1,3},{2,4}}
    44603: {{1,2},{2,3},{2,4}}
    56173: {{1,2},{1,3},{3,4}}
    58609: {{1,3},{1,4},{2,3}}
    83291: {{1,2},{1,4},{3,4}}
    91031: {{1,3},{1,4},{2,4}}
    91039: {{1,2},{2,3},{3,4}}
    99499: {{1,3},{2,3},{2,4}}
   141401: {{1,2},{2,4},{3,4}}
   147533: {{1,4},{2,3},{2,4}}
   203087: {{1,3},{2,3},{3,4}}
   301129: {{1,4},{2,3},{3,4}}
   315433: {{1,3},{2,4},{3,4}}
   467711: {{1,4},{2,4},{3,4}}
   761917: {{1,2},{1,3},{1,4},{2,3}}
  1183403: {{1,2},{1,3},{1,4},{2,4}}
  1280669: {{1,2},{1,3},{1,4},{1,5}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#]),Length[zsm[primeMS[#]]]==1]&]