This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320640 #20 Aug 10 2024 16:22:35 %S A320640 1,1,1,3,1,4,1,1,3,1,1,1,7,3,8,3,3,6,1,1,1,3,10,3,1,1,1,4,4,8,6,33,8, %T A320640 1,4,2,2,2,38,14,2,1,1,2,1,3,18,1,10,1,23,4,2,2,4,5,4,1,1,1,3,1,1,13, %U A320640 1,1,3,2,1,6,2,1,1,5,16,15,2,1,4,6,120,1,1,1 %N A320640 Continued fraction of (C + sqrt(4 + C^2))/2, where C is the Catalan constant. %C A320640 Continued fraction of the constant in A320639. %H A320640 G. C. Greubel, <a href="/A320640/b320640.txt">Table of n, a(n) for n = 0..9999</a> %p A320640 Digits:=200: evalf((Catalan+sqrt(4+Catalan^2))/2, 1000): %p A320640 numtheory[cfrac](%, 200,'quotients') ; %t A320640 ContinuedFraction[(Catalan + Sqrt[4 + Catalan^2])/2, 84] (* _Michael De Vlieger_, Oct 23 2018 *) %o A320640 (PARI) default(realprecision, 100); contfrac((Catalan+sqrt(4+Catalan^2))/2) \\ _Michel Marcus_, Oct 26 2018 %o A320640 (Magma) SetDefaultRealField(RealField(100)); R:=RealField(); ContinuedFraction((Catalan(R) + Sqrt(4 + Catalan(R)^2))/2); // _G. C. Greubel_, Oct 31 2018 %Y A320640 Cf. A006752, A188640, A320639 (decimal expansion). %K A320640 nonn,cofr %O A320640 0,4 %A A320640 _Paolo P. Lava_, Oct 18 2018 %E A320640 Offset changed by _Andrew Howroyd_, Aug 10 2024