This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320654 #7 Apr 02 2019 05:52:30 %S A320654 1,2,8,32,126,496,1952,7680,30216,118882,467728,1840224,7240160, %T A320654 28485616,112073536,440941056,1734834302,6825515600,26854243752, %U A320654 105655081568,415688349456,1635480294080,6434618135968,25316300481024,99604212169632,391881866363890,1541816293103184 %N A320654 Expansion of 1/(2 - Product_{k>=1} (1 + x^k)/(1 - x^k)). %C A320654 Invert transform of A015128. %H A320654 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A320654 G.f.: 1/(2 - 1/theta_4(x)), where theta_() is the Jacobi theta function. %F A320654 a(0) = 1; a(n) = Sum_{k=1..n} A015128(k)*a(n-k). %p A320654 a:=series(1/(2-mul((1+x^k)/(1-x^k),k=1..100)),x=0,27): seq(coeff(a,x,n),n=0..26); # _Paolo P. Lava_, Apr 02 2019 %t A320654 nmax = 26; CoefficientList[Series[1/(2 - Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x] %t A320654 nmax = 26; CoefficientList[Series[1/(2 - 1/EllipticTheta[4, 0, x]), {x, 0, nmax}], x] %t A320654 a[0] = 1; a[n_] := a[n] = Sum[Sum[PartitionsP[k - j] PartitionsQ[j], {j, 0, k}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 26}] %Y A320654 Cf. A002448, A015128, A055887, A299108, A304969. %K A320654 nonn %O A320654 0,2 %A A320654 _Ilya Gutkovskiy_, Oct 18 2018