cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320657 a(n) is the number of non-unimodal sequences with n nonzero terms that arise as a convolution of sequences of binomial coefficients preceded by a finite number of ones.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 7, 12, 16, 24, 30, 41, 50, 65, 77, 96, 112, 136, 156, 185, 210, 245, 275, 316, 352, 400, 442, 497, 546, 609, 665, 736, 800, 880, 952, 1041, 1122, 1221, 1311, 1420, 1520, 1640, 1750, 1881, 2002, 2145, 2277, 2432, 2576, 2744, 2900, 3081, 3250, 3445, 3627, 3836, 4032
Offset: 1

Views

Author

Tricia Muldoon Brown, Oct 17 2018

Keywords

Comments

For integers x,y,p,q >= 0, set (s_i){i>=1} to be the sequence of p ones followed by the binomial coefficients C(x,j) for 0 <= j <= x followed by an infinite string of zeros, and set (t_i){i>=1} to be the sequence of q ones followed by the binomial coefficients C(y,j) for 0 <= j <= y followed by an infinite string of zeros. Then a(n) is the number of non-unimodal sequences (r_i){i>=1} where r_i = Sum{j=1..i} s_j*t_{i-j} for some(s_i) and (t_i) such that x + y + p + q + 1 = n.
Let T be a rooted tree created by identifying the root vertices of two broom graphs. a(n) is the number of trees T on n vertices whose poset of connected, vertex-induced subgraphs is not rank unimodal.

Crossrefs

Cf. A005993, A024206. Equals A005581 for n even.

Programs

  • Mathematica
    Table[If[EvenQ[n], 2*(Sum[Floor[i(i+4)/4], {i,0,(n/2)}]) - Floor[n^2/16], 2*(Sum[Floor[i(i+4)/4], {i,0,(n-1)/2}]) - Floor[(n-1)^2/16] + Floor[(n+1)(n+9)/16]], {n,0,40}]

Formula

a(n+10) = 2*(Sum_{i=1..n/2} floor(i*(i+4)/4)) - floor(n^2/16) for n even.
a(n+10) = 2*(Sum_{i=1..(n-1)/2} floor(i(i+4)/4)) - floor((n-1)^2/16) + floor((n+1)*(n+9)/16) for n odd.