This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320658 #8 Oct 19 2018 09:47:57 %S A320658 1,0,1,1,0,0,1,0,2,1,0,2,1,0,0,3,0,0,1,0,2,1,0,0,2,0,5,2,1,3,0,0,0,1, %T A320658 0,6,1,0,2,4,0,0,1,0,0,1,0,9,3,0,0,2,1,0,2,0,2,0,0,0,1,1,6,15,0,3,0,0, %U A320658 0,4,1,0,0,0,6,2,0,0,1,0,17,1,0,7,2,0 %N A320658 Number of factorizations of A181821(n) into semiprimes. Number of multiset partitions, of a multiset whose multiplicities are the prime indices of n, into pairs. %C A320658 This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %e A320658 The a(84) = 7 factorizations into semiprimes: %e A320658 84 = (4*4*9*35) %e A320658 84 = (4*4*15*21) %e A320658 84 = (4*6*6*35) %e A320658 84 = (4*6*10*21) %e A320658 84 = (4*6*14*15) %e A320658 84 = (4*9*10*14) %e A320658 84 = (6*6*10*14) %e A320658 The a(84) = 7 multiset partitions into pairs: %e A320658 {{1,1},{1,1},{2,2},{3,4}} %e A320658 {{1,1},{1,1},{2,3},{2,4}} %e A320658 {{1,1},{1,2},{1,2},{3,4}} %e A320658 {{1,1},{1,2},{1,3},{2,4}} %e A320658 {{1,1},{1,2},{1,4},{2,3}} %e A320658 {{1,1},{2,2},{1,3},{1,4}} %e A320658 {{1,2},{1,2},{1,3},{1,4}} %t A320658 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A320658 bepfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[bepfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]]; %t A320658 Table[Length[bepfacs[Times@@Prime/@nrmptn[n]]],{n,100}] %Y A320658 Cf. A001221, A001222, A007716, A007717, A056239, A112798, A181821, A305936, A318284, A320655, A320656, A320659. %K A320658 nonn %O A320658 1,9 %A A320658 _Gus Wiseman_, Oct 18 2018