A320659 Number of factorizations of A181821(n) into squarefree semiprimes. Number of multiset partitions, of a multiset whose multiplicities are the prime indices of n, into strict pairs.
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 15, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 6, 0, 0, 1, 0, 0, 0
Offset: 1
Keywords
Examples
The a(48) = 6 factorizations: 4620 = (6*10*77) 4620 = (6*14*55) 4620 = (6*22*35) 4620 = (10*14*33) 4620 = (10*21*22) 4620 = (14*15*22) The a(48) = 6 multiset partitions: {{1,2},{1,3},{4,5}} {{1,2},{1,4},{3,5}} {{1,2},{1,5},{3,4}} {{1,3},{1,4},{2,5}} {{1,3},{2,4},{1,5}} {{1,4},{2,3},{1,5}}
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; qepfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[qepfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; Table[Length[qepfacs[Times@@Prime/@nrmptn[n]]],{n,100}]
Comments