This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320692 #13 Apr 24 2021 20:44:13 %S A320692 1,5,11,16,22,33,49,70,98,135,184,248,330,436,572,743,959,1232,1572, %T A320692 1994,2518,3165,3961,4936,6125,7575,9338,11469,14041,17142,20867, %U A320692 25331,30671,37042,44629,53647,64342,77007,91977,109632,130426,154884,183596,217250 %N A320692 Number of partitions of n with up to five distinct kinds of 1. %H A320692 Alois P. Heinz, <a href="/A320692/b320692.txt">Table of n, a(n) for n = 0..10000</a> %F A320692 a(n) ~ Pi * 2^(5/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - _Vaclav Kotesovec_, Oct 24 2018 %F A320692 G.f.: (1 + x)^5 * Product_{k>=2} 1 / (1 - x^k). - _Ilya Gutkovskiy_, Apr 24 2021 %p A320692 b:= proc(n, i) option remember; `if`(n=0 or i=1, %p A320692 binomial(5, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1)) %p A320692 end: %p A320692 a:= n-> b(n$2): %p A320692 seq(a(n), n=0..60); %t A320692 b[n_, i_] := b[n, i] = If[n == 0 || i == 1, Binomial[5, n], If[i > n, 0, b[n - i, i]] + b[n, i - 1]]; %t A320692 a[n_] := b[n, n]; %t A320692 a /@ Range[0, 60] (* _Jean-François Alcover_, Dec 14 2020 *) %Y A320692 Column k=5 of A292622. %K A320692 nonn %O A320692 0,2 %A A320692 _Alois P. Heinz_, Oct 19 2018