This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320731 #11 Nov 16 2024 17:30:28 %S A320731 1,3,9,24,60,141,328,738,1647,3618,7893,17055,36619,78144,165888, %T A320731 350619,738012,1548279,3237611,6752439,14046525,29157612,60396996, %U A320731 124885167 %N A320731 Number of possible states when placing n tokens of 2 alternating types on 3 piles. %C A320731 Piles start empty and have no height limit. A token can only be placed on top of a pile. The starting token is fixed. %e A320731 With alternating symbols A and B on three piles (starting with A), the following states emerge after placing 3 symbols in all 3^3 possible ways: %e A320731 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A320731 A A %e A320731 B B B A A A A A A B B B %e A320731 A__ AA_ A_A AB_ AB_ ABA A_B AAB A_B BA_ BA_ BAA AA_ _A_ _AA %e A320731 16 17 18 19 20 21 22 23 24 25 26 27 %e A320731 A %e A320731 A A A A A A B B B %e A320731 AAB _AB _AB B_A BAA B_A ABA _BA _BA A_A _AA __A %e A320731 3 pairs of states (numbered (6,22), (8,16) and (12,20)) are identical, all others are different, hence a(3)=24. %o A320731 (Python) %o A320731 def fill(patterns, state_in, ply_nr, n_plies, n_players, n_stacks): %o A320731 if ply_nr>=n_plies: %o A320731 patterns.add(tuple(state_in)) %o A320731 else: %o A320731 symbol=chr(ord('A')+ply_nr%n_players) %o A320731 for st in range(n_stacks): %o A320731 state_out=list(state_in) %o A320731 state_out[st]+=symbol %o A320731 fill(patterns, state_out, ply_nr+1, n_plies, n_players, n_stacks) %o A320731 def A320731(n): %o A320731 n_plies, n_players, n_stacks = n, 2, 3 %o A320731 patterns=set() %o A320731 state=[""]*n_stacks %o A320731 fill(patterns, state, 0, n_plies, n_players, n_stacks) %o A320731 return len(patterns) %Y A320731 For 2 token types on 2 piles, see A320452. %K A320731 nonn,more %O A320731 0,2 %A A320731 _Bert Dobbelaere_, Oct 20 2018