A320772 Prime generating polynomial: a(n) = (4*n - 29)^2 + 58.
683, 499, 347, 227, 139, 83, 59, 67, 107, 179, 283, 419, 587, 787, 1019, 1283, 1579, 1907, 2267, 2659, 3083, 3539, 4027, 4547, 5099, 5683, 6299, 6947, 7627, 8339, 9083, 9859, 10667, 11507, 12379, 13283, 14219, 15187, 16187, 17219, 18283, 19379, 20507, 21667, 22859, 24083, 25339, 26627, 27947
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A048988.
Programs
-
Mathematica
Array[(4# - 29)^2 + 58 &, 50] (* Amiram Eldar, Dec 15 2018 *)
Formula
From Elmo R. Oliveira, Feb 08 2025: (Start)
G.f.: x*(899*x^2 - 1550*x + 683)/(1-x)^3.
E.g.f.: exp(x)*(16*x^2 - 216*x + 899) - 899.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Comments