This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320773 #38 Jan 25 2020 02:32:20 %S A320773 2,3,5,6,8,10,11,12,15,17,18,20,24,26,27,30,35,37,38,39,40,42,48,50, %T A320773 51,56,63,65,66,68,72,80,82,83,84,87,90,99,101,102,104,105,110,120, %U A320773 122,123,132,143,145,146,147,148,150,152,156,168,170,171,182,195,197,198,200 %N A320773 Numbers (excluding squares) whose square root has a continued fraction with a period < 3. %C A320773 The Heron sequence of every number a(n) has the following relationship: numerator(h(k))^2 - a(n)*denominator(h(k))^2 = 1 for k > 1. %C A320773 The Heron sequence of every number a(n) has the following relationship with the continued fraction f(s) convergent to sqrt(a(n)): h(k) = f(2^k-1). %C A320773 From _Gerhard Kirchner_, Jan 17 2020: (Start) %C A320773 Numbers k = m^2 + r with m > 0 and 0 < r <= 2m such that r is a divisor of 2m. %C A320773 Continued fraction: k = [m; 2m/r, 2m, 2m/r, 2m, ...]. %C A320773 The number of terms that are between m^2 and (m+1)^2 is equal to the number of divisors of 2m, which is A099777(m). %C A320773 Proof see link. The Maxima code below demonstrates the divisor property. Note that there is no divisor of 2m between m and 2m. %C A320773 (End) %H A320773 Gerhard Kirchner, <a href="/A320773/a320773_1.pdf">Divisor property of a(n)</a> %e A320773 The continued fraction of sqrt(6) = 2 + 1/(2 + 1/(4 + 1/(2 + 1/(4 + 1/(2 + 1/(4 + ...)))))) = [2; 2, 4, 2, 4, 2, 4, ...] has repeating portion (2, 4) with period 2, so 6 is a term. %p A320773 Digits:=40: nr:=0: %p A320773 for z from 2 to 200 do %p A320773 test:=true: c:=sqrt(z): %p A320773 if (c=floor(c)) the test:=false: end if: %p A320773 while (test=true) do %p A320773 b[0]:=floor(c): %p A320773 r[0]:=c: %p A320773 for k from 1 to 2 do %p A320773 r[k]:=evalf(1/(r[k-1]-b[k-1])): %p A320773 b[k]:=floor(r[k]): %p A320773 end do: %p A320773 if (b[1]=2*b[0]) or (b[2]=2*b[0]) then nr:=nr+1: a[nr]:=z: printf("%4d",z): end if: %p A320773 test:=false: %p A320773 end do: %p A320773 end do: %t A320773 Select[Range[200], !IntegerQ[Sqrt[#]] && Length@ContinuedFraction[Sqrt[#]][[-1]]<3 &] (* _Amiram Eldar_, Nov 01 2018 *) %o A320773 (Maxima) %o A320773 block([n: 2, m: 0, r: 0, k: 0, kmax: 10,v: ""], %o A320773 while k<kmax do %o A320773 (m: floor(sqrt(n)), r: n-m^2, %o A320773 if mod(2*m,r)=0 then (k: k+1, print(n)), %o A320773 if r= m then n: n+m else (if r= 2*m then n: n+2 else n: n+1))); %o A320773 /* _Gerhard Kirchner_, Jan 17 2020 */ %K A320773 nonn %O A320773 1,1 %A A320773 _Paul Weisenhorn_, Oct 21 2018 %E A320773 Edited by _Jon E. Schoenfield_, Oct 19 2019