cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320776 Inverse Euler transform of the number of prime factors (with multiplicity) function A001222.

This page as a plain text file.
%I A320776 #10 Nov 21 2022 08:18:26
%S A320776 1,0,1,1,1,0,-1,-1,0,1,0,-1,-1,-1,1,3,3,-2,-5,-4,0,7,7,0,-9,-10,2,15,
%T A320776 15,-3,-27,-30,3,46,51,1,-71,-91,-7,117,157,23,-194,-265,-57,318,465,
%U A320776 111,-536,-821,-230,893,1456,505,-1485,-2559,-1036,2433,4483,2022
%N A320776 Inverse Euler transform of the number of prime factors (with multiplicity) function A001222.
%C A320776 The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.
%p A320776 # The function EulerInvTransform is defined in A358451.
%p A320776 a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-NumberOfPrimeFactors(n))):
%p A320776 seq(a(n), n = 0..59); # _Peter Luschny_, Nov 21 2022
%t A320776 EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
%t A320776 Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
%t A320776 EulerInvTransform[Array[PrimeOmega,100]]
%Y A320776 Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
%Y A320776 Euler transforms: A000081, A001970, A006171, A007294, A061255, A061256, A061257, A073576, A117209, A293548, A293549.
%Y A320776 Inverse Euler transforms: A059966, A320767, A320777, A320778, A320779, A320780, A320781, A320782.
%K A320776 sign
%O A320776 0,16
%A A320776 _Gus Wiseman_, Oct 22 2018