cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320777 Inverse Euler transform of the number of distinct prime factors (without multiplicity) function A001221.

This page as a plain text file.
%I A320777 #6 Oct 22 2018 17:42:49
%S A320777 1,0,1,1,0,0,0,0,-1,-1,1,1,0,-1,0,1,-1,-2,1,3,1,-2,-2,1,0,-4,0,6,6,-4,
%T A320777 -8,1,4,-4,-5,10,16,-4,-25,-7,17,5,-16,2,42,12,-58,-48,40,59,-27,-44,
%U A320777 67,86,-103,-187,36,236,45,-213,-5,284,-23,-526,-188,663,520
%N A320777 Inverse Euler transform of the number of distinct prime factors (without multiplicity) function A001221.
%C A320777 The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.
%t A320777 EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
%t A320777 Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
%t A320777 EulerInvTransform[Array[PrimeNu,100]]
%Y A320777 Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
%Y A320777 Euler transforms: A000081, A001970, A006171, A007294, A061255, A061256, A061257, A073576, A117209, A293548, A293549.
%Y A320777 Inverse Euler transforms: A059966, A320767, A320776, A320778, A320779, A320780, A320781, A320782.
%K A320777 sign
%O A320777 0,18
%A A320777 _Gus Wiseman_, Oct 22 2018