A320778 Inverse Euler transform of the Euler totient function phi = A000010.
1, 1, 0, 1, 0, 2, -3, 4, -4, 4, -9, 14, -19, 30, -42, 50, -76, 128, -194, 286, -412, 598, -909, 1386, -2100, 3178, -4763, 7122, -10758, 16414, -25061, 38056, -57643, 87568, -133436, 203618, -311128, 475536, -726355, 1109718, -1697766, 2601166, -3987903, 6114666
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
# The function EulerInvTransform is defined in A358451. a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-Totient(n))): seq(a(n), n = 0..43); # Peter Luschny, Nov 21 2022
-
Mathematica
EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]]; Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]]; EulerInvTransform[Array[EulerPhi,30]]
Comments