This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320779 #21 Jul 15 2024 15:33:16 %S A320779 1,1,0,0,-1,1,-1,0,1,-1,0,1,-1,-1,2,1,-2,-2,2,3,-4,0,3,-3,3,-2,-2,2,1, %T A320779 7,-15,0,17,-11,-1,0,9,-4,-18,26,-10,-10,24,-17,-15,21,27,-42,-37,69, %U A320779 43,-113,-11,149,-98,-24,67,-57,24,-53,213,-243,-193,704 %N A320779 Inverse Euler transform of the number of divisors function A000005. %C A320779 The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). %H A320779 Alois P. Heinz, <a href="/A320779/b320779.txt">Table of n, a(n) for n = 1..5000</a> %H A320779 OEIS Wiki, <a href="https://oeis.org/wiki/Euler_transform">Euler transform</a> %p A320779 # The function EulerInvTransform is defined in A358451. %p A320779 a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-SumOfDivisors(n, 0))): %p A320779 seq(a(n), n = 1..64); # _Peter Luschny_, Nov 21 2022 %t A320779 EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]]; %t A320779 Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]]; %t A320779 EulerInvTransform[Table[DivisorSigma[0,n],{n,100}]] %o A320779 (Python) %o A320779 from functools import lru_cache %o A320779 from sympy import mobius, divisors, divisor_count %o A320779 def A320779(n): %o A320779 @lru_cache(maxsize=None) %o A320779 def b(n): return divisor_count(n) %o A320779 @lru_cache(maxsize=None) %o A320779 def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n)) %o A320779 return sum(mobius(d)*c(n//d) for d in divisors(n,generator=True))//n # _Chai Wah Wu_, Jul 15 2024 %Y A320779 Cf. A000005. %K A320779 sign %O A320779 1,15 %A A320779 _Gus Wiseman_, Oct 22 2018