cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320779 Inverse Euler transform of the number of divisors function A000005.

This page as a plain text file.
%I A320779 #21 Jul 15 2024 15:33:16
%S A320779 1,1,0,0,-1,1,-1,0,1,-1,0,1,-1,-1,2,1,-2,-2,2,3,-4,0,3,-3,3,-2,-2,2,1,
%T A320779 7,-15,0,17,-11,-1,0,9,-4,-18,26,-10,-10,24,-17,-15,21,27,-42,-37,69,
%U A320779 43,-113,-11,149,-98,-24,67,-57,24,-53,213,-243,-193,704
%N A320779 Inverse Euler transform of the number of divisors function A000005.
%C A320779 The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n).
%H A320779 Alois P. Heinz, <a href="/A320779/b320779.txt">Table of n, a(n) for n = 1..5000</a>
%H A320779 OEIS Wiki, <a href="https://oeis.org/wiki/Euler_transform">Euler transform</a>
%p A320779 # The function EulerInvTransform is defined in A358451.
%p A320779 a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-SumOfDivisors(n, 0))):
%p A320779 seq(a(n), n = 1..64); # _Peter Luschny_, Nov 21 2022
%t A320779 EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
%t A320779 Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
%t A320779 EulerInvTransform[Table[DivisorSigma[0,n],{n,100}]]
%o A320779 (Python)
%o A320779 from functools import lru_cache
%o A320779 from sympy import mobius, divisors, divisor_count
%o A320779 def A320779(n):
%o A320779     @lru_cache(maxsize=None)
%o A320779     def b(n): return divisor_count(n)
%o A320779     @lru_cache(maxsize=None)
%o A320779     def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
%o A320779     return sum(mobius(d)*c(n//d) for d in divisors(n,generator=True))//n # _Chai Wah Wu_, Jul 15 2024
%Y A320779 Cf. A000005.
%K A320779 sign
%O A320779 1,15
%A A320779 _Gus Wiseman_, Oct 22 2018