A320780 Inverse Euler transform of the sum-of-divisors or sigma function A000203.
1, 2, 1, 0, -3, 1, -1, 1, 3, -5, -1, 4, 3, -3, -7, 8, 1, -9, 7, 8, -13, -12, 27, 7, -19, -14, 11, -17, -25, 198, -81, -312, 89, 326, 325, -739, -275, 572, -255, 1287, -453, -2062, -583, 2155, 5985, -6725, -6661, 6968, 3045, 3876, -7205, -2773, -5447, -4902
Offset: 1
Keywords
Links
- OEIS Wiki, Euler transform
Crossrefs
Cf. A000203.
Programs
-
Maple
# The function EulerInvTransform is defined in A358451. a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-SumOfDivisors(n, 1))): seq(a(n), n = 1..54); # Peter Luschny, Nov 21 2022
-
Mathematica
EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]]; Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]]; EulerInvTransform[Table[DivisorSigma[1,n],{n,30}]]
Comments