A320781 Inverse Euler transform of the Moebius function A008683.
1, -2, 0, 0, -1, 2, -4, 5, -7, 9, -10, 7, -5, -2, 19, -44, 70, -103, 138, -166, 154, -83, -70, 346, -797, 1413, -2160, 2931, -3479, 3380, -2080, -1259, 7593, -17743, 32014, -49818, 68683, -82985, 82807, -53462, -24942, 176139, -422887, 777357, -1226688
Offset: 1
Keywords
Links
- OEIS Wiki, Euler transform
Crossrefs
Cf. A008683,
Programs
-
Maple
# The function EulerInvTransform is defined in A358451. a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-Moebius(n))): seq(a(n), n = 1..45); # Peter Luschny, Nov 21 2022
-
Mathematica
EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]]; Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]]; EulerInvTransform[Table[MoebiusMu[n],{n,30}]]
-
Python
from functools import lru_cache from sympy import mobius, divisors def A320781(n): @lru_cache(maxsize=None) def b(n): return mobius(n) @lru_cache(maxsize=None) def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n)) return sum(b(d)*c(n//d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 15 2024
Comments