cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320785 Inverse Euler transform of the number of factorizations function A001055.

This page as a plain text file.
%I A320785 #4 Oct 22 2018 22:55:27
%S A320785 1,1,0,0,1,-1,1,-1,1,0,-1,1,-1,0,0,1,1,-3,3,-3,0,4,-6,6,-5,5,-1,-7,13,
%T A320785 -16,15,-8,-3,12,-25,41,-40,21,10,-51,83,-93,81,-38,-44,148,-234,258,
%U A320785 -190,35,184,-429,616,-660,480,-18,-640,1289,-1714,1693,-1039,-268
%N A320785 Inverse Euler transform of the number of factorizations function A001055.
%C A320785 The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.
%H A320785 OEIS Wiki, <a href="https://oeis.org/wiki/Euler_transform">Euler transform</a>
%t A320785 EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
%t A320785 Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
%t A320785 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A320785 EulerInvTransform[Table[Length[facs[n]],{n,100}]]
%Y A320785 Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
%Y A320785 Euler transforms: A000081, A001970, A006171, A007294, A061255, A061256, A061257, A073576, A117209, A293548, A293549.
%Y A320785 Inverse Euler transforms: A059966, A320767, A320776, A320777, A320778, A320779, A320780, A320781, A320782.
%K A320785 sign
%O A320785 0,18
%A A320785 _Gus Wiseman_, Oct 22 2018