cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320787 Number of multisets of exactly two partitions of positive integers into distinct parts with total sum of parts equal to n.

This page as a plain text file.
%I A320787 #9 Dec 14 2020 05:13:48
%S A320787 1,1,3,4,8,11,18,25,38,52,75,101,140,186,252,330,438,567,740,948,1221,
%T A320787 1549,1973,2482,3129,3907,4884,6055,7512,9255,11402,13967,17102,20836,
%U A320787 25372,30760,37262,44970,54221,65156,78220,93622,111937,133481,158996,188930
%N A320787 Number of multisets of exactly two partitions of positive integers into distinct parts with total sum of parts equal to n.
%H A320787 Alois P. Heinz, <a href="/A320787/b320787.txt">Table of n, a(n) for n = 2..1000</a>
%F A320787 a(n) = [x^n y^2] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
%p A320787 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
%p A320787       d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p A320787     end:
%p A320787 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p A320787       add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 3)
%p A320787     end:
%p A320787 a:= n-> coeff(b(n$2), x, 2):
%p A320787 seq(a(n), n=2..60);
%t A320787 g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];
%t A320787 b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[g[i] + j - 1, j], {j, 0, n/i}]]], {x, 0, 3}];
%t A320787 a[n_] := SeriesCoefficient[b[n, n], {x, 0, 2}];
%t A320787 a /@ Range[2, 60] (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ *)
%Y A320787 Column k=2 of A285229.
%Y A320787 Cf. A000009.
%K A320787 nonn
%O A320787 2,3
%A A320787 _Alois P. Heinz_, Oct 21 2018