cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320788 Number of multisets of exactly three partitions of positive integers into distinct parts with total sum of parts equal to n.

This page as a plain text file.
%I A320788 #8 Dec 14 2020 05:13:54
%S A320788 1,1,3,5,10,16,29,44,72,110,169,250,373,538,778,1104,1559,2172,3016,
%T A320788 4136,5651,7653,10314,13800,18389,24342,32097,42096,54991,71500,92637,
%U A320788 119506,153659,196831,251332,319834,405824,513312,647504,814448,1021792,1278547
%N A320788 Number of multisets of exactly three partitions of positive integers into distinct parts with total sum of parts equal to n.
%H A320788 Alois P. Heinz, <a href="/A320788/b320788.txt">Table of n, a(n) for n = 3..1000</a>
%F A320788 a(n) = [x^n y^3] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
%p A320788 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
%p A320788       d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p A320788     end:
%p A320788 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p A320788       add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 4)
%p A320788     end:
%p A320788 a:= n-> coeff(b(n$2), x, 3):
%p A320788 seq(a(n), n=3..60);
%t A320788 g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];
%t A320788 b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[g[i] + j - 1, j], {j, 0, n/i}]]], {x, 0, 4}];
%t A320788 a[n_] := SeriesCoefficient[b[n, n], {x, 0, 3}];
%t A320788 a /@ Range[3, 60] (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ *)
%Y A320788 Column k=3 of A285229.
%Y A320788 Cf. A000009.
%K A320788 nonn
%O A320788 3,3
%A A320788 _Alois P. Heinz_, Oct 21 2018