cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320789 Number of multisets of exactly four partitions of positive integers into distinct parts with total sum of parts equal to n.

This page as a plain text file.
%I A320789 #7 Dec 14 2020 05:14:01
%S A320789 1,1,3,5,11,18,34,55,96,152,248,386,607,921,1405,2092,3112,4551,6635,
%T A320789 9545,13683,19401,27393,38346,53441,73928,101840,139398,190020,257601,
%U A320789 347836,467381,625686,833917,1107547,1465136,1931754,2537747,3323490,4338012,5645645
%N A320789 Number of multisets of exactly four partitions of positive integers into distinct parts with total sum of parts equal to n.
%H A320789 Alois P. Heinz, <a href="/A320789/b320789.txt">Table of n, a(n) for n = 4..1000</a>
%F A320789 a(n) = [x^n y^4] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
%p A320789 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
%p A320789       d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p A320789     end:
%p A320789 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p A320789       add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 5)
%p A320789     end:
%p A320789 a:= n-> coeff(b(n$2), x, 4):
%p A320789 seq(a(n), n=4..60);
%t A320789 g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];
%t A320789 b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[g[i] + j - 1, j], {j, 0, n/i}]]], {x, 0, 5}];
%t A320789 a[n_] := SeriesCoefficient[b[n, n], {x, 0, 4}];
%t A320789 a /@ Range[4, 60] (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ *)
%Y A320789 Column k=4 of A285229.
%Y A320789 Cf. A000009.
%K A320789 nonn
%O A320789 4,3
%A A320789 _Alois P. Heinz_, Oct 21 2018