cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320790 Number of multisets of exactly five partitions of positive integers into distinct parts with total sum of parts equal to n.

This page as a plain text file.
%I A320790 #7 Dec 14 2020 05:14:08
%S A320790 1,1,3,5,11,19,36,60,107,176,296,475,770,1211,1906,2939,4518,6842,
%T A320790 10313,15363,22770,33424,48802,70688,101854,145755,207528,293704,
%U A320790 413691,579571,808328,1121923,1550645,2133751,2924579,3992307,5429751,7357195,9934357
%N A320790 Number of multisets of exactly five partitions of positive integers into distinct parts with total sum of parts equal to n.
%H A320790 Alois P. Heinz, <a href="/A320790/b320790.txt">Table of n, a(n) for n = 5..1000</a>
%F A320790 a(n) = [x^n y^5] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
%p A320790 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
%p A320790       d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p A320790     end:
%p A320790 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p A320790       add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 6)
%p A320790     end:
%p A320790 a:= n-> coeff(b(n$2), x, 5):
%p A320790 seq(a(n), n=5..60);
%t A320790 g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];
%t A320790 b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[g[i] + j - 1, j], {j, 0, n/i}]]], {x, 0, 6}];
%t A320790 a[n_] := SeriesCoefficient[b[n, n], {x, 0, 5}];
%t A320790 a /@ Range[5, 60] (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ *)
%Y A320790 Column k=5 of A285229.
%Y A320790 Cf. A000009.
%K A320790 nonn
%O A320790 5,3
%A A320790 _Alois P. Heinz_, Oct 21 2018