cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320791 Number of multisets of exactly six partitions of positive integers into distinct parts with total sum of parts equal to n.

This page as a plain text file.
%I A320791 #6 Oct 21 2018 09:37:47
%S A320791 1,1,3,5,11,19,37,62,112,187,320,523,866,1386,2229,3510,5516,8538,
%T A320791 13172,20073,30461,45781,68469,101586,149991,219922,320925,465492,
%U A320791 672055,965063,1379741,1962957,2781094,3922672,5511041,7710818,10748577,14926037,20654385
%N A320791 Number of multisets of exactly six partitions of positive integers into distinct parts with total sum of parts equal to n.
%H A320791 Alois P. Heinz, <a href="/A320791/b320791.txt">Table of n, a(n) for n = 6..1000</a>
%F A320791 a(n) = [x^n y^6] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
%p A320791 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
%p A320791       d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p A320791     end:
%p A320791 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p A320791       add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 7)
%p A320791     end:
%p A320791 a:= n-> coeff(b(n$2), x, 6):
%p A320791 seq(a(n), n=6..60);
%Y A320791 Column k=6 of A285229.
%Y A320791 Cf. A000009.
%K A320791 nonn
%O A320791 6,3
%A A320791 _Alois P. Heinz_, Oct 21 2018