This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320791 #6 Oct 21 2018 09:37:47 %S A320791 1,1,3,5,11,19,37,62,112,187,320,523,866,1386,2229,3510,5516,8538, %T A320791 13172,20073,30461,45781,68469,101586,149991,219922,320925,465492, %U A320791 672055,965063,1379741,1962957,2781094,3922672,5511041,7710818,10748577,14926037,20654385 %N A320791 Number of multisets of exactly six partitions of positive integers into distinct parts with total sum of parts equal to n. %H A320791 Alois P. Heinz, <a href="/A320791/b320791.txt">Table of n, a(n) for n = 6..1000</a> %F A320791 a(n) = [x^n y^6] Product_{j>=1} 1/(1-y*x^j)^A000009(j). %p A320791 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd, %p A320791 d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A320791 end: %p A320791 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, %p A320791 add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 7) %p A320791 end: %p A320791 a:= n-> coeff(b(n$2), x, 6): %p A320791 seq(a(n), n=6..60); %Y A320791 Column k=6 of A285229. %Y A320791 Cf. A000009. %K A320791 nonn %O A320791 6,3 %A A320791 _Alois P. Heinz_, Oct 21 2018