cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320792 Number of multisets of exactly seven partitions of positive integers into distinct parts with total sum of parts equal to n.

This page as a plain text file.
%I A320792 #4 Oct 21 2018 09:35:21
%S A320792 1,1,3,5,11,19,37,63,114,192,331,547,914,1482,2412,3847,6126,9620,
%T A320792 15052,23292,35889,54806,83294,125658,188656,281418,417828,616838,
%U A320792 906516,1325457,1929644,2796189,4035315,5798648,8300214,11833892,16810048,23790327,33552202
%N A320792 Number of multisets of exactly seven partitions of positive integers into distinct parts with total sum of parts equal to n.
%H A320792 Alois P. Heinz, <a href="/A320792/b320792.txt">Table of n, a(n) for n = 7..1000</a>
%F A320792 a(n) = [x^n y^7] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
%p A320792 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
%p A320792       d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p A320792     end:
%p A320792 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p A320792       add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 8)
%p A320792     end:
%p A320792 a:= n-> coeff(b(n$2), x, 7):
%p A320792 seq(a(n), n=7..60);
%Y A320792 Column k=7 of A285229.
%Y A320792 Cf. A000009.
%K A320792 nonn
%O A320792 7,3
%A A320792 _Alois P. Heinz_, Oct 21 2018