cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320793 Number of multisets of exactly eight partitions of positive integers into distinct parts with total sum of parts equal to n.

This page as a plain text file.
%I A320793 #4 Oct 21 2018 09:40:29
%S A320793 1,1,3,5,11,19,37,63,115,194,336,558,938,1530,2508,4030,6472,10246,
%T A320793 16179,25270,39325,60664,93187,142119,215800,325647,489288,731154,
%U A320793 1087981,1611036,2375905,3488306,5101755,7430869,10783473,15589092,22457429,32236645
%N A320793 Number of multisets of exactly eight partitions of positive integers into distinct parts with total sum of parts equal to n.
%H A320793 Alois P. Heinz, <a href="/A320793/b320793.txt">Table of n, a(n) for n = 8..1000</a>
%F A320793 a(n) = [x^n y^8] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
%p A320793 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
%p A320793       d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p A320793     end:
%p A320793 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p A320793       add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 9)
%p A320793     end:
%p A320793 a:= n-> coeff(b(n$2), x, 8):
%p A320793 seq(a(n), n=8..60);
%Y A320793 Column k=8 of A285229.
%Y A320793 Cf. A000009.
%K A320793 nonn
%O A320793 8,3
%A A320793 _Alois P. Heinz_, Oct 21 2018