This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320793 #4 Oct 21 2018 09:40:29 %S A320793 1,1,3,5,11,19,37,63,115,194,336,558,938,1530,2508,4030,6472,10246, %T A320793 16179,25270,39325,60664,93187,142119,215800,325647,489288,731154, %U A320793 1087981,1611036,2375905,3488306,5101755,7430869,10783473,15589092,22457429,32236645 %N A320793 Number of multisets of exactly eight partitions of positive integers into distinct parts with total sum of parts equal to n. %H A320793 Alois P. Heinz, <a href="/A320793/b320793.txt">Table of n, a(n) for n = 8..1000</a> %F A320793 a(n) = [x^n y^8] Product_{j>=1} 1/(1-y*x^j)^A000009(j). %p A320793 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd, %p A320793 d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A320793 end: %p A320793 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, %p A320793 add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 9) %p A320793 end: %p A320793 a:= n-> coeff(b(n$2), x, 8): %p A320793 seq(a(n), n=8..60); %Y A320793 Column k=8 of A285229. %Y A320793 Cf. A000009. %K A320793 nonn %O A320793 8,3 %A A320793 _Alois P. Heinz_, Oct 21 2018