cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320794 Number of multisets of exactly nine partitions of positive integers into distinct parts with total sum of parts equal to n.

This page as a plain text file.
%I A320794 #4 Oct 21 2018 09:43:03
%S A320794 1,1,3,5,11,19,37,63,115,195,338,563,949,1554,2556,4126,6655,10592,
%T A320794 16815,26415,41354,64212,99295,152512,233279,354729,537193,809347,
%U A320794 1214485,1814052,2699197,3999366,5904074,8682185,12722807,18576815,27034032,39208697
%N A320794 Number of multisets of exactly nine partitions of positive integers into distinct parts with total sum of parts equal to n.
%H A320794 Alois P. Heinz, <a href="/A320794/b320794.txt">Table of n, a(n) for n = 9..1000</a>
%F A320794 a(n) = [x^n y^9] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
%p A320794 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
%p A320794       d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p A320794     end:
%p A320794 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p A320794       add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 10)
%p A320794     end:
%p A320794 a:= n-> coeff(b(n$2), x, 9):
%p A320794 seq(a(n), n=9..60);
%Y A320794 Column k=9 of A285229.
%Y A320794 Cf. A000009.
%K A320794 nonn
%O A320794 9,3
%A A320794 _Alois P. Heinz_, Oct 21 2018