cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320795 Number of multisets of exactly ten partitions of positive integers into distinct parts with total sum of parts equal to n.

This page as a plain text file.
%I A320795 #4 Oct 21 2018 09:45:28
%S A320795 1,1,3,5,11,19,37,63,115,195,339,565,954,1565,2580,4174,6751,10775,
%T A320795 17161,27051,42510,66261,102900,158746,243955,372778,567443,859492,
%U A320795 1296958,1948458,2916636,4348377,6460535,9563222,14109242,20744995,30405638,44422190
%N A320795 Number of multisets of exactly ten partitions of positive integers into distinct parts with total sum of parts equal to n.
%H A320795 Alois P. Heinz, <a href="/A320795/b320795.txt">Table of n, a(n) for n = 10..1000</a>
%F A320795 a(n) = [x^n y^10] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
%p A320795 g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
%p A320795       d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p A320795     end:
%p A320795 b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p A320795       add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 11)
%p A320795     end:
%p A320795 a:= n-> coeff(b(n$2), x, 10):
%p A320795 seq(a(n), n=10..60);
%Y A320795 Column k=10 of A285229.
%Y A320795 Cf. A000009.
%K A320795 nonn
%O A320795 10,3
%A A320795 _Alois P. Heinz_, Oct 21 2018